Conformalized Regression for Continuous Bounded Outcomes
- URL: http://arxiv.org/abs/2507.14023v1
- Date: Fri, 18 Jul 2025 15:51:48 GMT
- Title: Conformalized Regression for Continuous Bounded Outcomes
- Authors: Zhanli Wu, Fabrizio Leisen, F. Javier Rubio,
- Abstract summary: Regression problems with bounded continuous outcomes frequently arise in real-world statistical and machine learning applications.<n>Most of the existing statistical and machine learning literature has focused either on point prediction of bounded outcomes or on interval prediction based on approximations.<n>We develop conformal prediction intervals for bounded outcomes based on transformation models and beta regression.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Regression problems with bounded continuous outcomes frequently arise in real-world statistical and machine learning applications, such as the analysis of rates and proportions. A central challenge in this setting is predicting a response associated with a new covariate value. Most of the existing statistical and machine learning literature has focused either on point prediction of bounded outcomes or on interval prediction based on asymptotic approximations. We develop conformal prediction intervals for bounded outcomes based on transformation models and beta regression. We introduce tailored non-conformity measures based on residuals that are aligned with the underlying models, and account for the inherent heteroscedasticity in regression settings with bounded outcomes. We present a theoretical result on asymptotic marginal and conditional validity in the context of full conformal prediction, which remains valid under model misspecification. For split conformal prediction, we provide an empirical coverage analysis based on a comprehensive simulation study. The simulation study demonstrates that both methods provide valid finite-sample predictive coverage, including settings with model misspecification. Finally, we demonstrate the practical performance of the proposed conformal prediction intervals on real data and compare them with bootstrap-based alternatives.
Related papers
- Pre-validation Revisited [79.92204034170092]
We show properties and benefits of pre-validation in prediction, inference and error estimation by simulations and applications.<n>We propose not only an analytical distribution of the test statistic for the pre-validated predictor under certain models, but also a generic bootstrap procedure to conduct inference.
arXiv Detail & Related papers (2025-05-21T00:20:14Z) - Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
We address the problem of uncertainty quantification in time series by exploiting correlated sequences.<n>We propose a novel distribution-free approach based on conformal prediction framework and quantile regression.<n>Our approach provides accurate coverage and achieves state-of-the-art uncertainty quantification in relevant benchmarks.
arXiv Detail & Related papers (2025-02-13T16:12:17Z) - Progression: an extrapolation principle for regression [0.0]
We propose a novel statistical extrapolation principle.
It assumes a simple relationship between predictors and the response at the boundary of the training predictor samples.
Our semi-parametric method, progression, leverages this extrapolation principle and offers guarantees on the approximation error beyond the training data range.
arXiv Detail & Related papers (2024-10-30T17:29:51Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
Conformal prediction and split conformal prediction offer a distribution-free approach to estimating prediction intervals with statistical guarantees.
Recent work has shown that split conformal prediction can produce state-of-the-art prediction intervals when focusing on marginal coverage.
This paper tries to shed new light on how prediction intervals can be constructed, using methods such as normalized and Mondrian conformal prediction.
arXiv Detail & Related papers (2023-09-15T11:10:46Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Conformal Prediction with Missing Values [19.18178194789968]
We first show that the marginal coverage guarantee of conformal prediction holds on imputed data for any missingness distribution.
We then show that a universally consistent quantile regression algorithm trained on the imputed data is Bayes optimal for the pinball risk.
arXiv Detail & Related papers (2023-06-05T09:28:03Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
split conformal prediction represents a promising avenue to obtain finite-sample guarantees under minimal distribution-free assumptions.
We highlight the connection between split conformal prediction and classical tolerance predictors developed in the 1940s.
arXiv Detail & Related papers (2022-10-26T14:12:24Z) - Conformal histogram regression [15.153110906331737]
This paper develops a conformal method to compute prediction intervals for non-parametric regression that can automatically adapt to skewed data.
Leveraging black-box machine learning algorithms, it translates their output into the shortest prediction intervals with approximate conditional coverage.
The resulting prediction intervals provably have marginal coverage in finite samples, while achieving conditional coverage and optimal length if the black-box model is consistent.
arXiv Detail & Related papers (2021-05-18T18:05:02Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
Clinical researchers often select among and evaluate risk prediction models.
Standard metrics calculated from retrospective data are only related to model utility under certain assumptions.
When predictions are delivered repeatedly throughout time, the relationship between standard metrics and utility is further complicated.
arXiv Detail & Related papers (2020-06-02T16:26:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.