論文の概要: KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models
- arxiv url: http://arxiv.org/abs/2507.14032v1
- Date: Fri, 18 Jul 2025 16:00:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.349589
- Title: KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models
- Title(参考訳): KROMA:知識検索モデルと大規模言語モデルとのオントロジーマッチング
- Authors: Lam Nguyen, Erika Barcelos, Roger French, Yinghui Wu,
- Abstract要約: KROMAはLarge Language Models(LLM)をRetrieval-Augmented Generationパイプライン内で利用する新しいフレームワークである。
性能と効率の両面を最適化するために、KROMAは二相性に基づく概念マッチングと軽量なオントロジー改善ステップを統合している。
- 参考スコア(独自算出の注目度): 7.525546531795111
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ontology Matching (OM) is a cornerstone task of semantic interoperability, yet existing systems often rely on handcrafted rules or specialized models with limited adaptability. We present KROMA, a novel OM framework that harnesses Large Language Models (LLMs) within a Retrieval-Augmented Generation (RAG) pipeline to dynamically enrich the semantic context of OM tasks with structural, lexical, and definitional knowledge. To optimize both performance and efficiency, KROMA integrates a bisimilarity-based concept matching and a lightweight ontology refinement step, which prune candidate concepts and substantially reduce the communication overhead from invoking LLMs. Through experiments on multiple benchmark datasets, we show that integrating knowledge retrieval with context-augmented LLMs significantly enhances ontology matching, outperforming both classic OM systems and cutting-edge LLM-based approaches while keeping communication overhead comparable. Our study highlights the feasibility and benefit of the proposed optimization techniques (targeted knowledge retrieval, prompt enrichment, and ontology refinement) for ontology matching at scale.
- Abstract(参考訳): オントロジーマッチング(Ontology Matching、OM)はセマンティック・インターオペラビリティの基礎となるタスクであるが、既存のシステムは手作りのルールや適応性に制限のある特殊なモデルに依存していることが多い。
我々は,Large Language Models (LLM) を利用した新しい OM フレームワークである KROMA を提案し,構造的,語彙的,定義的知識を備えた OM タスクの意味的コンテキストを動的に強化する。
性能と効率の両方を最適化するために、KROMAは二相性に基づく概念マッチングと軽量なオントロジー改善ステップを統合し、候補概念を創り出し、LLMの呼び出しによる通信オーバーヘッドを大幅に削減する。
複数のベンチマークデータセットを用いた実験により、知識検索と文脈拡張LLMの統合により、オントロジーマッチングが大幅に向上し、従来のOMシステムと最先端LLMベースのアプローチの両方において、通信オーバーヘッドを同等に保ちながら性能が向上することを示した。
本研究は,大規模オントロジーマッチングのための最適化手法(目標知識検索,即時強化,オントロジー改良)の有効性と有用性を明らかにする。
関連論文リスト
- Ontology-Enhanced Knowledge Graph Completion using Large Language Models [20.080012331845065]
大言語モデル(LLM)は知識グラフ補完(KGC)において広く採用されている。
OL-KGCを用いた拡張KGC法を提案する。
まず、神経知覚機構を利用して、構造情報をテキスト空間に効果的に埋め込む。
論文 参考訳(メタデータ) (2025-07-28T09:00:48Z) - Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
本研究は、大規模言語モデル(LLM)用に設計された離散トークン化手法の最初の構造的分類と解析である。
古典的および近代的なパラダイムにまたがる8つの代表的なVQ変種を分類し、アルゴリズムの原理を分析し、力学を訓練し、LLMパイプラインとの統合に挑戦する。
コードブックの崩壊、不安定な勾配推定、モダリティ固有の符号化制約など、重要な課題を特定する。
論文 参考訳(メタデータ) (2025-07-21T10:52:14Z) - Graft: Integrating the Domain Knowledge via Efficient Parameter Synergy for MLLMs [56.76586846269894]
MLLM(Multimodal Large Language Models)は、様々な領域で成功している。
その重要性にもかかわらず、ドメイン固有のMLLM間の知識共有の研究はほとんど未調査のままである。
専門家機能のモジュール構成を可能にする統一パラメータ統合フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-30T15:07:41Z) - EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration [60.47645731801866]
大規模言語モデル(LLM)は、高度なレコメンデータシステムの基本バックボーンとしてますます活用されている。
LLMは事前訓練された言語意味論であるが、llm-Backboneを通してゼロから協調意味論を学ぶ。
内因性行動情報と内因性行動情報とを非侵襲的に統合するデコーダのみの生成推薦フレームワークであるEAGER-LLMを提案する。
論文 参考訳(メタデータ) (2025-02-20T17:01:57Z) - Enriching Ontologies with Disjointness Axioms using Large Language Models [5.355177558868206]
大型モデル(LLM)は、クラス不整合公理を識別し、主張することで一貫性を提供する。
本研究の目的は,LLMに埋め込まれた暗黙の知識を活用して,存在論的不一致を分類することである。
以上の結果から, LLMは効果的なプロンプト戦略によって導かれることにより, 不整合性関係を確実に識別できることが示唆された。
論文 参考訳(メタデータ) (2024-10-04T09:00:06Z) - DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System [83.34921966305804]
大規模言語モデル (LLM) はレコメンデーションシステムにおいて顕著な性能を示した。
LLMと協調モデルのための新しいプラグ・アンド・プレイアライメントフレームワークを提案する。
我々の手法は既存の最先端アルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2024-08-15T15:56:23Z) - Bridging LLMs and KGs without Fine-Tuning: Intermediate Probing Meets Subgraph-Aware Entity Descriptions [49.36683223327633]
大規模言語モデル(LLM)は、幅広い世界の知識をカプセル化し、強力なコンテキストモデリング能力を示す。
実効的で効率的なKGCを実現するために,LLMの強みを頑健な知識表現と相乗化するための新しいフレームワークを提案する。
従来手法に比べて47%の相対的な改善を達成し,我々の知る限り,ファインチューニング LLM に匹敵する分類性能を初めて達成した。
論文 参考訳(メタデータ) (2024-08-13T10:15:55Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - LLMs4OM: Matching Ontologies with Large Language Models [0.14999444543328289]
オントロジーマッチング(オントロジーマッチング、Ontology Matching、OM)は、異種データの相互運用性と知識共有を整合させる知識統合において重要なタスクである。
OMタスクにおけるLLM(Large Language Models)の有効性を評価するための新しいアプローチであるLLMs4OMフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-16T06:55:45Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Agent-OM: Leveraging LLM Agents for Ontology Matching [4.222245509121683]
本研究では,オントロジーマッチングシステムのための新しいエージェント駆動設計パラダイムを提案する。
本稿では,検索とマッチングのための2つのシームズエージェントからなるAgent-OM (Agent for Ontology Matching) フレームワークを提案する。
本システムは,OMタスクにおける長年の最高性能に非常に近い結果が得られる。
論文 参考訳(メタデータ) (2023-12-01T03:44:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。