論文の概要: Foundation Models as Class-Incremental Learners for Dermatological Image Classification
- arxiv url: http://arxiv.org/abs/2507.14050v1
- Date: Fri, 18 Jul 2025 16:15:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.357617
- Title: Foundation Models as Class-Incremental Learners for Dermatological Image Classification
- Title(参考訳): 皮膚画像分類のためのクラスインクリメンタル学習者としての基礎モデル
- Authors: Mohamed Elkhayat, Mohamed Mahmoud, Jamil Fayyad, Nourhan Bayasi,
- Abstract要約: CIL(Class-Incremental Learning)は、それまでの知識を忘れずに、時間とともに新しいクラスを学ぶことを目的としている。
バックボーンを凍結したままにして,タスクごとに軽量化を漸進的に行うという,シンプルで効果的な手法を提案する。
このセットアップは、レギュラー化、リプレイ、アーキテクチャベースのメソッドを忘れずに、最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 2.539905942670258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class-Incremental Learning (CIL) aims to learn new classes over time without forgetting previously acquired knowledge. The emergence of foundation models (FM) pretrained on large datasets presents new opportunities for CIL by offering rich, transferable representations. However, their potential for enabling incremental learning in dermatology remains largely unexplored. In this paper, we systematically evaluate frozen FMs pretrained on large-scale skin lesion datasets for CIL in dermatological disease classification. We propose a simple yet effective approach where the backbone remains frozen, and a lightweight MLP is trained incrementally for each task. This setup achieves state-of-the-art performance without forgetting, outperforming regularization, replay, and architecture based methods. To further explore the capabilities of frozen FMs, we examine zero training scenarios using nearest mean classifiers with prototypes derived from their embeddings. Through extensive ablation studies, we demonstrate that this prototype based variant can also achieve competitive results. Our findings highlight the strength of frozen FMs for continual learning in dermatology and support their broader adoption in real world medical applications. Our code and datasets are available here.
- Abstract(参考訳): CIL(Class-Incremental Learning)は、それまでの知識を忘れずに、時間とともに新しいクラスを学ぶことを目的としている。
大規模なデータセットで事前訓練された基盤モデル(FM)の出現は、リッチで転送可能な表現を提供することで、CILに新たな機会をもたらす。
しかし、皮膚科における漸進的な学習を可能にする可能性はほとんど解明されていない。
本稿では,皮膚疾患分類におけるCIL用大規模皮膚病変データセットを用いた凍結FMの系統的評価を行った。
本稿では,背骨が凍結状態のままで,各タスクに対して軽量MPPを漸進的に訓練する簡単な手法を提案する。
このセットアップは、レギュラー化、リプレイ、アーキテクチャベースのメソッドを忘れずに、最先端のパフォーマンスを達成する。
凍結FMの能力を更に探求するため, 組込みから派生したプロトタイプを用いた最寄りの平均分類器を用いて, ゼロトレーニングシナリオを検証した。
広範囲にわたるアブレーション研究を通じて、このプロトタイプベースの変種は競争的な結果も得ることを示した。
本研究は, 皮膚科領域における連続学習における凍結FMの強みを強調し, 現実の医療応用において広く採用されていることを支援するものである。
コードとデータセットはここにある。
関連論文リスト
- Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping [1.927195358774599]
大規模なドメイン内データセットの事前トレーニングは、履歴病理基盤モデル(FM)にタスクに依存しないデータ表現を学習する能力を与える。
計算病理学では、スライド全体の自動解析には、スライドのギガピクセルスケールのため、複数のインスタンス学習(MIL)フレームワークが必要である。
本研究は,MIL分類フレームワーク内のパッチレベルの特徴抽出器として,病理組織学的FMを評価するための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2025-06-23T14:12:16Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
本研究では、ドメイン固有の公平度指標を用いてタスク間でバイアスがどのように進化し、異なるCL戦略がこの進化にどのように影響するかを検討する。
以上の結果から,擬似ラベルと擬似ラベルの学習は最適分類性能を実現するが,擬似ラベルの偏りは小さいことが示唆された。
論文 参考訳(メタデータ) (2024-04-10T09:48:52Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - Towards Novel Class Discovery: A Study in Novel Skin Lesions Clustering [22.24175320515204]
皮膚内視鏡画像データセットから新しい意味クラスを自動的に発見する新しいクラス発見フレームワークを提案する。
具体的には、まずコントラスト学習を用いて、既知のカテゴリと未知のカテゴリのすべてのデータに基づいて、頑健で偏りのない特徴表現を学習する。
皮膚科学データセットISIC 2019について広範な実験を行い,本手法が既知のカテゴリの知識を有効活用し,新たな意味カテゴリーを発見できることを実験的に示した。
論文 参考訳(メタデータ) (2023-09-28T13:59:29Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
我々は、AUCによる新たな深層学習手法による機会と課題を提示し、議論する(別名、アンダーラインbfディープアンダーラインbfAUC分類)。
論文 参考訳(メタデータ) (2021-11-01T15:31:32Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - Curriculum learning for improved femur fracture classification:
scheduling data with prior knowledge and uncertainty [36.54112505898611]
畳み込みニューラルネットワーク(CNN)を用いた大腿骨近位部骨折の3および7AOクラスへの自動分類法を提案する。
我々の新しい定式化は、トレーニングサンプルを個別に重み付けし、トレーニングセットを再順序付けし、データのサブセットをサンプリングする3つのカリキュラム戦略を再結合する。
このカリキュラムは、経験豊富な外傷外科医のパフォーマンスまで、大腿骨近位部骨折分類を改善している。
論文 参考訳(メタデータ) (2020-07-31T14:28:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。