論文の概要: Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping
- arxiv url: http://arxiv.org/abs/2506.18668v1
- Date: Mon, 23 Jun 2025 14:12:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:37.010672
- Title: Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping
- Title(参考訳): 皮膚がん治療のための多施設データセットにおける病理組織基盤モデルのベンチマーク
- Authors: Pablo Meseguer, Rocío del Amor, Valery Naranjo,
- Abstract要約: 大規模なドメイン内データセットの事前トレーニングは、履歴病理基盤モデル(FM)にタスクに依存しないデータ表現を学習する能力を与える。
計算病理学では、スライド全体の自動解析には、スライドのギガピクセルスケールのため、複数のインスタンス学習(MIL)フレームワークが必要である。
本研究は,MIL分類フレームワーク内のパッチレベルの特徴抽出器として,病理組織学的FMを評価するための新しいベンチマークを提案する。
- 参考スコア(独自算出の注目度): 1.927195358774599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretraining on large-scale, in-domain datasets grants histopathology foundation models (FM) the ability to learn task-agnostic data representations, enhancing transfer learning on downstream tasks. In computational pathology, automated whole slide image analysis requires multiple instance learning (MIL) frameworks due to the gigapixel scale of the slides. The diversity among histopathology FMs has highlighted the need to design real-world challenges for evaluating their effectiveness. To bridge this gap, our work presents a novel benchmark for evaluating histopathology FMs as patch-level feature extractors within a MIL classification framework. For that purpose, we leverage the AI4SkIN dataset, a multi-center cohort encompassing slides with challenging cutaneous spindle cell neoplasm subtypes. We also define the Foundation Model - Silhouette Index (FM-SI), a novel metric to measure model consistency against distribution shifts. Our experimentation shows that extracting less biased features enhances classification performance, especially in similarity-based MIL classifiers.
- Abstract(参考訳): 大規模なドメイン内データセットの事前トレーニングは、組織学的基盤モデル(FM)にタスクに依存しないデータ表現を学習する能力を与え、下流タスクでの転送学習を強化する。
計算病理学では、スライド全体の自動解析には、スライドのギガピクセルスケールのため、複数のインスタンス学習(MIL)フレームワークが必要である。
FMの多様性は、その有効性を評価するために現実世界の課題を設計する必要性を強調している。
このギャップを埋めるために,本研究では,MIL分類フレームワーク内のパッチレベルの特徴抽出器として,病理組織学的FMを評価するための新しいベンチマークを提案する。
そこで我々は,皮膚紡糸細胞腫瘍のサブタイプに挑戦するスライドを含む多中心コホートであるAI4SkINデータセットを活用する。
また、分布シフトに対するモデル一貫性を測定するための新しい指標であるファンデーションモデル-シルエット指数(FM-SI)も定義する。
実験により, バイアスの少ない特徴抽出は, 特に類似性に基づくMIL分類器において, 分類性能を向上させることが示された。
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - A Survey of Pathology Foundation Model: Progress and Future Directions [3.009351592961681]
コンピュータ病理学では、自動がん診断のためにスライド画像全体を解析する。
最近の病理基盤モデル (PFM) は, 大規模な病理組織学的データに基づいて, 抽出器と凝集器の双方を大幅に強化している。
PFMを組織する階層的な分類法を,任意の領域の基盤モデル解析に適用可能なトップダウンの哲学を通じて提案する。
論文 参考訳(メタデータ) (2025-04-05T03:44:09Z) - Revisiting Automatic Data Curation for Vision Foundation Models in Digital Pathology [41.34847597178388]
視覚基盤モデル(FM)は、全スライディング画像から抽出された高度に異質なタイルの組織学的特徴を表現することを学ぶ。
タイルレベルでの教師なし自動データキュレーションの可能性について検討し,3億5000万個のタイルを考慮に入れた。
論文 参考訳(メタデータ) (2025-03-24T14:23:48Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
ゼロショット組織像分類におけるこれらの課題に対処するため, MR-PHE(Multi-Resolution Prompt-Guided Hybrid Embedding)と呼ばれる新しいフレームワークを提案する。
我々は,グローバルな画像埋め込みと重み付けされたパッチ埋め込みを統合したハイブリッドな埋め込み戦略を導入する。
類似性に基づくパッチ重み付け機構は、クラス埋め込みとの関連性に基づいて、アテンションのような重み付けをパッチに割り当てる。
論文 参考訳(メタデータ) (2025-03-13T12:18:37Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
人工知能(AI)の最近の進歩は、医療画像と計算病理に革命をもたらしている。
デジタル全スライド画像(WSI)の解析における一定の課題は、何万ものタイルレベルの画像埋め込みをスライドレベルの表現に集約する問題である。
本研究は,9つの臨床的課題を対象とした10種類のスライドレベルのアグリゲーション手法のベンチマーク分析を行った。
論文 参考訳(メタデータ) (2024-07-10T17:00:57Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
本稿では,EMボリュームのマルチスケール一貫性を高める事前学習フレームワークを提案する。
当社のアプローチでは,強力なデータ拡張と弱いデータ拡張を統合することで,Siameseネットワークアーキテクチャを活用している。
効果的にボクセルと機能の一貫性をキャプチャし、EM分析のための転送可能な表現を学習する。
論文 参考訳(メタデータ) (2023-08-19T05:49:13Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。