DENSE: Longitudinal Progress Note Generation with Temporal Modeling of Heterogeneous Clinical Notes Across Hospital Visits
- URL: http://arxiv.org/abs/2507.14079v1
- Date: Fri, 18 Jul 2025 17:00:27 GMT
- Title: DENSE: Longitudinal Progress Note Generation with Temporal Modeling of Heterogeneous Clinical Notes Across Hospital Visits
- Authors: Garapati Keerthana, Manik Gupta,
- Abstract summary: Progress notes are among the most clinically meaningful artifacts in an Electronic Health Record.<n>Despite their importance, they are underrepresented in large-scale EHR datasets.<n>We present DENSE, a system designed to align with clinical documentation by simulating how physicians reference past encounters.
- Score: 0.1578515540930834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Progress notes are among the most clinically meaningful artifacts in an Electronic Health Record (EHR), offering temporally grounded insights into a patient's evolving condition, treatments, and care decisions. Despite their importance, they are severely underrepresented in large-scale EHR datasets. For instance, in the widely used Medical Information Mart for Intensive Care III (MIMIC-III) dataset, only about $8.56\%$ of hospital visits include progress notes, leaving gaps in longitudinal patient narratives. In contrast, the dataset contains a diverse array of other note types, each capturing different aspects of care. We present DENSE (Documenting Evolving Progress Notes from Scattered Evidence), a system designed to align with clinical documentation workflows by simulating how physicians reference past encounters while drafting progress notes. The system introduces a fine-grained note categorization and a temporal alignment mechanism that organizes heterogeneous notes across visits into structured, chronological inputs. At its core, DENSE leverages a clinically informed retrieval strategy to identify temporally and semantically relevant content from both current and prior visits. This retrieved evidence is used to prompt a large language model (LLM) to generate clinically coherent and temporally aware progress notes. We evaluate DENSE on a curated cohort of patients with multiple visits and complete progress note documentation. The generated notes demonstrate strong longitudinal fidelity, achieving a temporal alignment ratio of $1.089$, surpassing the continuity observed in original notes. By restoring narrative coherence across fragmented documentation, our system supports improved downstream tasks such as summarization, predictive modeling, and clinical decision support, offering a scalable solution for LLM-driven note synthesis in real-world healthcare settings.
Related papers
- ProMedTS: A Self-Supervised, Prompt-Guided Multimodal Approach for Integrating Medical Text and Time Series [27.70300880284899]
Large language models (LLMs) have shown remarkable performance in vision-grained tasks, but their application in the medical field remains underexplored.<n>We introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify data types.<n>We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2025-02-19T07:56:48Z) - Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
We present three key contributions to the field of clinical note generation using large language models (LLMs)<n>First, we introduce CliniKnote, a dataset consisting of 1,200 complex doctor-patient conversations paired with their full clinical notes.<n>Second, we propose K-SOAP, which enhances traditional SOAPcitepodder20soap (Subjective, Objective, Assessment, and Plan) notes by adding a keyword section at the top, allowing for quick identification of essential information.<n>Third, we develop an automatic pipeline to generate K-SOAP notes from doctor-patient conversations and benchmark various modern LLMs using various
arXiv Detail & Related papers (2024-08-26T18:39:31Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - Conceptualizing Machine Learning for Dynamic Information Retrieval of
Electronic Health Record Notes [6.1656026560972]
This work conceptualizes the use of EHR audit logs for machine learning as a source of supervision of note relevance in a specific clinical context.
We show that our methods can achieve an AUC of 0.963 for predicting which notes will be read in an individual note writing session.
arXiv Detail & Related papers (2023-08-09T21:04:19Z) - Making the Most Out of the Limited Context Length: Predictive Power
Varies with Clinical Note Type and Note Section [70.37720062263176]
We propose a framework to analyze the sections with high predictive power.
Using MIMIC-III, we show that: 1) predictive power distribution is different between nursing notes and discharge notes and 2) combining different types of notes could improve performance when the context length is large.
arXiv Detail & Related papers (2023-07-13T20:04:05Z) - A Marker-based Neural Network System for Extracting Social Determinants
of Health [12.6970199179668]
Social determinants of health (SDoH) on patients' healthcare quality and the disparity is well-known.
Many SDoH items are not coded in structured forms in electronic health records.
We explore a multi-stage pipeline involving named entity recognition (NER), relation classification (RC), and text classification methods to extract SDoH information from clinical notes automatically.
arXiv Detail & Related papers (2022-12-24T18:40:23Z) - User-Driven Research of Medical Note Generation Software [49.85146209418244]
We present three rounds of user studies carried out in the context of developing a medical note generation system.
We discuss the participating clinicians' impressions and views of how the system ought to be adapted to be of value to them.
We describe a three-week test run of the system in a live telehealth clinical practice.
arXiv Detail & Related papers (2022-05-05T10:18:06Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.