論文の概要: The Emotion-Memory Link: Do Memorability Annotations Matter for Intelligent Systems?
- arxiv url: http://arxiv.org/abs/2507.14084v1
- Date: Fri, 18 Jul 2025 17:06:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-21 20:43:26.369997
- Title: The Emotion-Memory Link: Do Memorability Annotations Matter for Intelligent Systems?
- Title(参考訳): 感情記憶リンク:記憶可能性アノテーションはインテリジェントシステムにとって重要か?
- Authors: Maria Tsfasman, Ramin Ghorbani, Catholijn M. Jonker, Bernd Dudzik,
- Abstract要約: 会話場面におけるグループ感情(Pleasure-Arousal)とグループ記憶可能性の関係について検討した。
この結果から, ランダムな確率で期待されるものとは, 影響と記憶可能性の関係を確実に区別できないことが明らかとなった。
- 参考スコア(独自算出の注目度): 1.960641679592198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans have a selective memory, remembering relevant episodes and forgetting the less relevant information. Possessing awareness of event memorability for a user could help intelligent systems in more accurate user modelling, especially for such applications as meeting support systems, memory augmentation, and meeting summarisation. Emotion recognition has been widely studied, since emotions are thought to signal moments of high personal relevance to users. The emotional experience of situations and their memorability have traditionally been considered to be closely tied to one another: moments that are experienced as highly emotional are considered to also be highly memorable. This relationship suggests that emotional annotations could serve as proxies for memorability. However, existing emotion recognition systems rely heavily on third-party annotations, which may not accurately represent the first-person experience of emotional relevance and memorability. This is why, in this study, we empirically examine the relationship between perceived group emotions (Pleasure-Arousal) and group memorability in the context of conversational interactions. Our investigation involves continuous time-based annotations of both emotions and memorability in dynamic, unstructured group settings, approximating conditions of real-world conversational AI applications such as online meeting support systems. Our results show that the observed relationship between affect and memorability annotations cannot be reliably distinguished from what might be expected under random chance. We discuss the implications of this surprising finding for the development and applications of Affective Computing technology. In addition, we contextualise our findings in broader discourses in the Affective Computing and point out important targets for future research efforts.
- Abstract(参考訳): 人間は選択的な記憶を持ち、関連するエピソードを記憶し、重要でない情報を忘れる。
ユーザに対するイベント記憶可能性の認識を評価することは、特にミーティング支援システム、メモリ拡張、ミーティング要約といったアプリケーションにおいて、インテリジェントなシステムのより正確なユーザモデリングを支援することができる。
感情認識は、利用者に高い個人関係の瞬間を示唆すると考えられるため、広く研究されている。
情緒的な経験と記憶力は伝統的に互いに密接に結びついていると考えられてきた。
この関係は、感情的なアノテーションが記憶可能性のプロキシとなることを示唆している。
しかし、既存の感情認識システムはサードパーティのアノテーションに大きく依存しているため、感情的関連性や記憶可能性のファーストパーソン体験を正確に表現することはできないかもしれない。
そこで本研究では,会話の文脈におけるグループ感情(プレジャー・オーラル)とグループ記憶可能性の関係を実証的に検討した。
我々の調査は、動的で非構造的なグループ設定における感情と記憶可能性の両方の継続的な時間ベースのアノテーション、オンラインミーティング支援システムのような現実の会話型AIアプリケーションの条件の近似を含む。
この結果から, ランダムな確率で期待されるものとは, 影響と記憶可能性の関係を確実に区別できないことが明らかとなった。
本稿では、この驚くべき発見がAffective Computing技術の開発と応用に与える影響について論じる。
さらに,Affective Computingの幅広い言論において,我々の研究成果を文脈的に理解し,今後の研究課題の重要な目標を指摘する。
関連論文リスト
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talkは、感情と同一性を切り離し、類似した特徴を持つ感情を協調するフレームワークである。
我々は、モーダル・アテンションを通して、音声と視覚の感情の手がかりを共同でモデル化するアンタングル型感情埋め込み装置を開発した。
次に,学習可能な感情バンクを用いた相関強化感情調和モジュールを提案する。
第3に、拡散過程における感情の一貫性を強制する感情識別目標を設計する。
論文 参考訳(メタデータ) (2025-04-25T05:28:21Z) - Modelling Emotions in Face-to-Face Setting: The Interplay of Eye-Tracking, Personality, and Temporal Dynamics [1.4645774851707578]
本研究では、視線追跡データ、時間的ダイナミクス、性格特性を統合することで、知覚と知覚の両方の感情の検出を大幅に向上させる方法について述べる。
本研究は,将来の情緒コンピューティングと人間エージェントシステムの設計を示唆するものである。
論文 参考訳(メタデータ) (2025-03-18T13:15:32Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
隠れ変数分離に基づく動的因果解離モデルを提案する。
このモデルは、対話の内容を効果的に分解し、感情の時間的蓄積を調べる。
具体的には,発話と隠れ変数の伝搬を推定する動的時間的ゆがみモデルを提案する。
論文 参考訳(メタデータ) (2023-09-13T12:58:09Z) - Learning Emotion Representations from Verbal and Nonverbal Communication [7.747924294389427]
本稿では,言語・非言語コミュニケーションから視覚的感情表現を抽出する最初の事前学習パラダイムであるEmotionCLIPを提案する。
EmotionCLIPは、感情誘導型コントラスト学習を用いて、主観的文脈エンコーディングと言語感情キューを通じて、非言語感情キューへの参加を誘導する。
EmotionCLIPは、感情理解におけるデータ不足の一般的な問題に対処し、関連する領域の進歩を促進する。
論文 参考訳(メタデータ) (2023-05-22T21:36:55Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in
Conversations [0.0]
本稿では,会話コンテキストを認知的視点から完全に理解するための新しい文脈推論ネットワーク(DialogueCRN)を提案する。
感情認知理論(Cognitive Theory of Emotion)に触発された我々は、感情の手がかりを抽出し統合するための多ターン推論モジュールを設計する。
推論モジュールは、人間の独特な認知的思考を模倣する直感的検索プロセスと意識的推論プロセスを反復的に実行する。
論文 参考訳(メタデータ) (2021-06-03T16:47:38Z) - AdCOFE: Advanced Contextual Feature Extraction in Conversations for
emotion classification [0.29360071145551075]
提案したAdCOFE(Advanced Contextual Feature extract)モデルはこれらの問題に対処する。
会話データセットにおける感情認識の実験は、AdCOFEが会話中の感情のキャプチャに有益であることを示しています。
論文 参考訳(メタデータ) (2021-04-09T17:58:19Z) - Infusing Multi-Source Knowledge with Heterogeneous Graph Neural Network
for Emotional Conversation Generation [25.808037796936766]
実世界の会話では,マルチソース情報から感情を直感的に知覚する。
感情的会話生成のための異種グラフモデルを提案する。
実験結果は,本モデルがマルチソース知識から感情を効果的に知覚できることを示した。
論文 参考訳(メタデータ) (2020-12-09T06:09:31Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。