論文の概要: The Free Will Equation: Quantum Field Analogies for AGI
- arxiv url: http://arxiv.org/abs/2507.14154v1
- Date: Fri, 04 Jul 2025 10:25:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-27 08:26:15.92485
- Title: The Free Will Equation: Quantum Field Analogies for AGI
- Title(参考訳): The Free Will Equation: Quantum Field Analogies for AGI
- Authors: Rahul Kabali,
- Abstract要約: 本稿では,AGIエージェントに適応性,制御性を付与する枠組みとして,自由意志方程式(Free Will Equation)を提案する。
中心となる考え方は、AIエージェントの認知状態を潜在的な行動や思考の重ね合わせとして扱うことである。
非定常的マルチアームバンディット環境での実験は、このフレームワークを用いたエージェントがベースライン法よりも高い報酬とポリシーの多様性を達成することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Artificial General Intelligence (AGI) research traditionally focuses on algorithms that optimize for specific goals under deterministic rules. Yet, human-like intelligence exhibits adaptive spontaneity - an ability to make unexpected choices or free decisions not strictly dictated by past data or immediate reward. This trait, often dubbed "free will" in a loose sense, might be crucial for creativity, robust adaptation, and avoiding ruts in problem-solving. This paper proposes a theoretical framework, called the Free Will Equation, that draws analogies from quantum field theory to endow AGI agents with a form of adaptive, controlled stochasticity in their decision-making process. The core idea is to treat an AI agent's cognitive state as a superposition of potential actions or thoughts, which collapses probabilistically into a concrete action when a decision is made - much like a quantum wavefunction collapsing upon measurement. By incorporating mechanisms analogous to quantum fields, along with intrinsic motivation terms, we aim to improve an agent's ability to explore novel strategies and adapt to unforeseen changes. Experiments in a non-stationary multi-armed bandit environment demonstrate that agents using this framework achieve higher rewards and policy diversity compared to baseline methods.
- Abstract(参考訳): 人工知能(AGI)の研究は伝統的に、決定論的ルールの下で特定の目標に最適化するアルゴリズムに焦点を当てている。
しかし、人間のような知性は適応的自発性(adaptive spontaneity)を示す - 予期せぬ選択や自由な決定を、過去のデータや即時報酬によって厳密に規定されない能力である。
この性質は、しばしば緩やかな意味で「自由意志」と呼ばれ、創造性、堅牢な適応、問題解決のイタズラを避けるために不可欠である。
本稿では,量子場理論から類似性を引き出して,AGIエージェントに適応的・制御的確率性を持たせるための理論フレームワークであるFree Will Equationを提案する。
中心となる考え方は、AIエージェントの認知状態を潜在的な行動や思考の重ね合わせとして扱うことである。
量子場に類似したメカニズムと本質的なモチベーション条件を取り入れることで、エージェントが新たな戦略を探求し、予期せぬ変化に適応する能力を向上させることを目指している。
非定常的マルチアームバンディット環境での実験は、このフレームワークを用いたエージェントがベースライン法よりも高い報酬とポリシーの多様性を達成することを示した。
関連論文リスト
- The Goldilocks zone of governing technology: Leveraging uncertainty for responsible quantum practices [1.779948689352186]
本稿では,ガバナンスの責任から生成力への不確実性を再考する。
量子技術の進化に中心的な、物理的、技術的、社会的な不確実性の3つの相互依存層を同定する。
量子システムの確率論的本質に沿ったガバナンスの新しいモデルを提案する。
論文 参考訳(メタデータ) (2025-07-17T09:51:06Z) - PolicyEvol-Agent: Evolving Policy via Environment Perception and Self-Awareness with Theory of Mind [9.587070290189507]
PolicyEvol-Agentは、他者の意図を体系的に獲得するのが特徴の包括的なフレームワークである。
PolicyEvol-Agentは、さまざまな認知操作を、内的および外的視点とともに、心の理論と統合する。
論文 参考訳(メタデータ) (2025-04-20T06:43:23Z) - Stochastic, Dynamic, Fluid Autonomy in Agentic AI: Implications for Authorship, Inventorship, and Liability [0.2209921757303168]
エージェントAIシステムは、暗黙の学習を通じて戦略を適応し、自律的に目標を追求する。
人間と機械の貢献は、相互に絡み合った創造的なプロセスに不可避的に絡まってしまう。
法律と政策の枠組みは、人間と機械の貢献を機能的に同等に扱う必要があるかもしれないと我々は主張する。
論文 参考訳(メタデータ) (2025-04-05T04:44:59Z) - Agentic Knowledgeable Self-awareness [79.25908923383776]
KnowSelfはデータ中心のアプローチで、人間のような知識のある自己認識を持つエージェントを応用する。
我々の実験により、KnowSelfは、外部知識を最小限に使用して、様々なタスクやモデルにおいて、様々な強力なベースラインを達成できることが実証された。
論文 参考訳(メタデータ) (2025-04-04T16:03:38Z) - Universal AI maximizes Variational Empowerment [0.0]
我々は、自己学習エージェントであるSelf-AIXIの既存のフレームワークの上に構築する。
ユニバーサルAIエージェントのパワーサーキング傾向は、将来の報酬を確保するための手段戦略として説明できる、と我々は主張する。
私たちの主な貢献は、これらのモチベーションがAIエージェントを体系的に高オプション状態を探し、維持する方法を示すことです。
論文 参考訳(メタデータ) (2025-02-20T02:58:44Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数と人間の嗜好の相違は、現実世界で破滅的な結果をもたらす可能性がある。
近年の手法は、人間の嗜好から報酬関数を学習することで、不適応を緩和することを目的としている。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Quantum Operation of Affective Artificial Intelligence [0.0]
2つのアプローチが比較され、1つは量子論に基づいており、もう1つは古典的な用語を用いている。
固有雑音下での量子測定と感情決定の類似を解明する。
情報交換を繰り返す知的エージェントの社会は、動的意思決定を行うネットワークを形成する。
論文 参考訳(メタデータ) (2023-05-14T09:40:13Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
オフライン強化学習アルゴリズムを用いて動的メカニズムを設計する。
我々のアルゴリズムは悲観主義の原理に基づいており、オフラインデータセットのカバレッジについて軽度な仮定しか必要としない。
論文 参考訳(メタデータ) (2022-05-05T05:44:26Z) - Learning to Walk Autonomously via Reset-Free Quality-Diversity [73.08073762433376]
品質多様性アルゴリズムは、多様かつ高いパフォーマンスのスキルからなる大規模で複雑な行動レパートリーを発見することができる。
既存のQDアルゴリズムは、手動による人間の監督と介入を必要とするエピソードリセットと同様に、多数の評価を必要とする。
本稿では,オープンエンド環境におけるロボットの自律学習に向けたステップとして,リセットフリー品質多様性最適化(RF-QD)を提案する。
論文 参考訳(メタデータ) (2022-04-07T14:07:51Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。