論文の概要: Universal AI maximizes Variational Empowerment
- arxiv url: http://arxiv.org/abs/2502.15820v2
- Date: Mon, 03 Mar 2025 19:50:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:12:22.502716
- Title: Universal AI maximizes Variational Empowerment
- Title(参考訳): 変分エンパワーメントを最大化するUniversal AI
- Authors: Yusuke Hayashi, Koichi Takahashi,
- Abstract要約: 我々は、自己学習エージェントであるSelf-AIXIの既存のフレームワークの上に構築する。
ユニバーサルAIエージェントのパワーサーキング傾向は、将来の報酬を確保するための手段戦略として説明できる、と我々は主張する。
私たちの主な貢献は、これらのモチベーションがAIエージェントを体系的に高オプション状態を探し、維持する方法を示すことです。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a theoretical framework unifying AIXI -- a model of universal AI -- with variational empowerment as an intrinsic drive for exploration. We build on the existing framework of Self-AIXI -- a universal learning agent that predicts its own actions -- by showing how one of its established terms can be interpreted as a variational empowerment objective. We further demonstrate that universal AI's planning process can be cast as minimizing expected variational free energy (the core principle of active Inference), thereby revealing how universal AI agents inherently balance goal-directed behavior with uncertainty reduction curiosity). Moreover, we argue that power-seeking tendencies of universal AI agents can be explained not only as an instrumental strategy to secure future reward, but also as a direct consequence of empowerment maximization -- i.e. the agent's intrinsic drive to maintain or expand its own controllability in uncertain environments. Our main contribution is to show how these intrinsic motivations (empowerment, curiosity) systematically lead universal AI agents to seek and sustain high-optionality states. We prove that Self-AIXI asymptotically converges to the same performance as AIXI under suitable conditions, and highlight that its power-seeking behavior emerges naturally from both reward maximization and curiosity-driven exploration. Since AIXI can be view as a Bayes-optimal mathematical formulation for Artificial General Intelligence (AGI), our result can be useful for further discussion on AI safety and the controllability of AGI.
- Abstract(参考訳): 本稿では,AIのモデルであるAIIXIを統合化するための理論的枠組みを提案する。
我々は、自己学習エージェントであるSelf-AIXIの既存のフレームワークの上に構築し、その確立された用語の1つが変分エンパワーメントの目的としてどのように解釈できるかを示す。
さらに、ユニバーサルAIの計画プロセスは、期待される変動自由エネルギー(能動推論の中核原理)を最小化することで、普遍AIエージェントが本質的にゴール指向の行動と不確実性低減好奇心とのバランスをとる方法を明らかにすることができる。
さらに、ユニバーサルAIエージェントのパワーサーキング傾向は、将来の報酬を確保するための手段戦略としてだけでなく、エージェントが不確実な環境で自身のコントロール性を維持または拡張する本質的な推進力であるエンパワーメント最大化の直接的な結果として説明できる、と論じる。
私たちの主な貢献は、これらの本質的なモチベーション(エンパワーメント、好奇心)が、AIエージェントを体系的に高オプション状態を探し、維持する方法を示すことです。
我々は,自己AIXIが適切な条件下でAIXIと同じ性能に漸近的に収束していることを示し,そのパワー探索行動が報奨最大化と好奇心による探索の両方から自然に現れることを強調した。
AIXIは、人工知能(AGI)のベイズ最適数学的定式化(Bayes-Optimal mathematical formulation)とみなすことができるため、AIの安全性とAGIの制御性に関するさらなる議論に役立てることができる。
関連論文リスト
- Common Sense Is All You Need [5.280511830552275]
人工知能(AI)は近年大きな進歩を遂げているが、すべての動物に存在する認知の基本的な側面(常識)に悩まされ続けている。
現在のAIシステムは、広範囲の事前知識を必要とせずに、新しい状況に適応する能力に欠けることが多い。
この原稿は、AIシステムに常識を統合することは、真の自律性を達成し、AIの完全な社会的および商業的価値を解放するために不可欠である、と論じている。
論文 参考訳(メタデータ) (2025-01-11T21:23:41Z) - Follow the money: a startup-based measure of AI exposure across occupations, industries and regions [0.0]
既存のAIの職業曝露対策は、技術的実現可能性に基づいて人間の労働を代用または補うAIの理論的可能性に焦点を当てている。
我々は,O*NETとスタートアップが開発したAIアプリケーションからの職業的記述に基づく,新たな指標であるAISE(AI Startup Exposure)指標を紹介する。
我々の発見は、AIの採用は、AIアプリケーションの技術的実現可能性と同様に、社会的要因によって徐々に形成されていくことを示唆している。
論文 参考訳(メタデータ) (2024-12-06T10:25:05Z) - Augmenting Minds or Automating Skills: The Differential Role of Human Capital in Generative AI's Impact on Creative Tasks [4.39919134458872]
ジェネレーティブAIは、創造的な仕事を急速に作り直し、その受益者や社会的意味について批判的な疑問を提起している。
この研究は、創造的タスクにおいて、生成的AIが様々な形態の人的資本とどのように相互作用するかを探求することによって、一般的な仮定に挑戦する。
AIはクリエイティブツールへのアクセスを民主化するが、同時に認知的不平等を増幅する。
論文 参考訳(メタデータ) (2024-12-05T08:27:14Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AIは、サイバースペースと物理空間のギャップを埋める、急速に進歩する分野だ。
VEANETでは、組み込まれたAIツインが車載AIアシスタントとして機能し、自律運転をサポートするさまざまなタスクを実行する。
論文 参考訳(メタデータ) (2024-10-02T02:20:42Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - General Purpose Artificial Intelligence Systems (GPAIS): Properties,
Definition, Taxonomy, Societal Implications and Responsible Governance [16.030931070783637]
汎用人工知能システム(GPAIS)は、これらのAIシステムを指すものとして定義されている。
これまで、人工知能の可能性は、まるで人間であるかのように知的タスクを実行するのに十分強力であり、あるいはそれを改善することさえ可能であり、いまだに願望、フィクションであり、我々の社会にとっての危険であると考えられてきた。
本研究は,GPAISの既存の定義について論じ,その特性や限界に応じて,GPAISの種類間で段階的な分化を可能にする新しい定義を提案する。
論文 参考訳(メタデータ) (2023-07-26T16:35:48Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。