On Splitting Lightweight Semantic Image Segmentation for Wireless Communications
- URL: http://arxiv.org/abs/2507.14199v1
- Date: Mon, 14 Jul 2025 15:55:02 GMT
- Title: On Splitting Lightweight Semantic Image Segmentation for Wireless Communications
- Authors: Ebrahim Abu-Helalah, Jordi Serra, Jordi Perez-Romero,
- Abstract summary: This paper proposes a novel approach to implementing semantic communication based on splitting the semantic image segmentation process between a resource constrained transmitter and the receiver.<n>It reduces the computational requirements at the resource constrained transmitter compared to doing all the semantic image segmentation in the transmitter.<n>This reflects the interest of this technique for its application in communication systems, particularly in the upcoming 6G systems.
- Score: 0.3959905439285648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic communication represents a promising technique towards reducing communication costs, especially when dealing with image segmentation, but it still lacks a balance between computational efficiency and bandwidth requirements while maintaining high image segmentation accuracy, particularly in resource-limited environments and changing channel conditions. On the other hand, the more complex and larger semantic image segmentation models become, the more stressed the devices are when processing data. This paper proposes a novel approach to implementing semantic communication based on splitting the semantic image segmentation process between a resource constrained transmitter and the receiver. This allows saving bandwidth by reducing the transmitted data while maintaining the accuracy of the semantic image segmentation. Additionally, it reduces the computational requirements at the resource constrained transmitter compared to doing all the semantic image segmentation in the transmitter. The proposed approach is evaluated by means of simulation-based experiments in terms of different metrics such as computational resource usage, required bit rate and segmentation accuracy. The results when comparing the proposal with the full semantic image segmentation in the transmitter show that up to 72% of the bit rate was reduced in the transmission process. In addition, the computational load of the transmitter is reduced by more than 19%. This reflects the interest of this technique for its application in communication systems, particularly in the upcoming 6G systems.
Related papers
- SQ-GAN: Semantic Image Communications Using Masked Vector Quantization [55.02795214161371]
This work introduces Semantically Masked VQ-GAN (SQ-GAN), a novel approach to optimize image compression for semantic/task-oriented communications.<n>SQ-GAN employs off-the-shelf semantic semantic segmentation and a new semantic-conditioned adaptive mask module (SAMM) to selectively encode semantically significant features of the images.
arXiv Detail & Related papers (2025-02-13T17:35:57Z) - Take What You Need: Flexible Multi-Task Semantic Communications with Channel Adaptation [51.53221300103261]
This article introduces a novel channel-adaptive and multi-task-aware semantic communication framework based on a masked auto-encoder architecture.<n>A channel-aware extractor is employed to dynamically select relevant information in response to real-time channel conditions.<n> Experimental results demonstrate the superior performance of our framework compared to conventional methods in tasks such as image reconstruction and object detection.
arXiv Detail & Related papers (2025-02-12T09:01:25Z) - Efficient Semantic Communication Through Transformer-Aided Compression [31.285983939625098]
We introduce a channel-aware adaptive framework for semantic communication.<n>By employing vision transformers, we interpret the attention mask as a measure of the semantic contents of the patches.<n>Our method enhances communication efficiency by adapting the encoding resolution to the content's relevance.
arXiv Detail & Related papers (2024-12-02T18:57:28Z) - Transformer-Aided Semantic Communications [28.63893944806149]
We employ vision transformers specifically for the purpose of compression and compact representation of the input image.
Through the use of the attention mechanism inherent in transformers, we create an attention mask.
We evaluate the effectiveness of our proposed framework using the TinyImageNet dataset.
arXiv Detail & Related papers (2024-05-02T17:50:53Z) - Image Generative Semantic Communication with Multi-Modal Similarity Estimation for Resource-Limited Networks [2.2997117992292764]
This study proposes a multi-modal image transmission method that leverages various types of semantic information for efficient semantic communication.
The proposed method extracts multi-modal semantic information from an original image and transmits only that to a receiver.
The receiver generates multiple images using an image-generation model and selects an output image based on semantic similarity.
arXiv Detail & Related papers (2024-04-17T11:42:39Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Optimization of Image Transmission in a Cooperative Semantic
Communication Networks [68.2233384648671]
A semantic communication framework for image transmission is developed.
Servers cooperatively transmit images to a set of users utilizing semantic communication techniques.
A multimodal metric is proposed to measure the correlation between the extracted semantic information and the original image.
arXiv Detail & Related papers (2023-01-01T15:59:13Z) - Adaptive Information Bottleneck Guided Joint Source and Channel Coding
for Image Transmission [132.72277692192878]
An adaptive information bottleneck (IB) guided joint source and channel coding (AIB-JSCC) is proposed for image transmission.
The goal of AIB-JSCC is to reduce the transmission rate while improving the image reconstruction quality.
Experimental results show that AIB-JSCC can significantly reduce the required amount of transmitted data and improve the reconstruction quality.
arXiv Detail & Related papers (2022-03-12T17:44:02Z) - Wireless Transmission of Images With The Assistance of Multi-level
Semantic Information [16.640928669609934]
MLSC-image is a multi-level semantic aware communication system for wireless image transmission.
We employ a pretrained image caption to capture the text semantics and a pretrained image segmentation model to obtain the segmentation semantics.
The numerical results validate the effectiveness and efficiency of the proposed semantic communication system.
arXiv Detail & Related papers (2022-02-08T16:25:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.