論文の概要: Geometry-Aware Active Learning of Pattern Rankings via Choquet-Based Aggregation
- arxiv url: http://arxiv.org/abs/2507.14217v1
- Date: Wed, 16 Jul 2025 07:41:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.773964
- Title: Geometry-Aware Active Learning of Pattern Rankings via Choquet-Based Aggregation
- Title(参考訳): 舞踏会によるパターンランキングの幾何学的学習
- Authors: Tudor Matei Opran, Samir Loudni,
- Abstract要約: 非線形ユーティリティアグリゲーションと幾何認識型クエリ選択を組み合わせた対話型学習フレームワークを提案する。
提案手法は,複数の興味度測定値に対するChoquet積分を用いてユーザの好みをモデル化し,情報的比較の選択を導くためにバージョン空間の幾何学的構造を利用する。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We address the pattern explosion problem in pattern mining by proposing an interactive learning framework that combines nonlinear utility aggregation with geometry-aware query selection. Our method models user preferences through a Choquet integral over multiple interestingness measures and exploits the geometric structure of the version space to guide the selection of informative comparisons. A branch-and-bound strategy with tight distance bounds enables efficient identification of queries near the decision boundary. Experiments on UCI datasets show that our approach outperforms existing methods such as ChoquetRank, achieving better ranking accuracy with fewer user interactions.
- Abstract(参考訳): 本稿では,非線形ユーティリティアグリゲーションと幾何学的クエリ選択を組み合わせた対話型学習フレームワークを提案することにより,パターンマイニングにおけるパターン爆発問題に対処する。
提案手法は,複数の興味度測定値に対するChoquet積分を用いてユーザの好みをモデル化し,情報的比較の選択を導くためにバージョン空間の幾何学的構造を利用する。
厳密な距離境界を持つ分岐とバウンドの戦略は、決定境界付近でのクエリの効率的な識別を可能にする。
UCIデータセットの実験では、私たちのアプローチはChoquetRankのような既存の手法よりも優れており、ユーザのインタラクションを少なくしてランキング精度が向上している。
関連論文リスト
- Reinforcement Learning-Based Dynamic Grouping for Tubular Structure Tracking [14.048453741483092]
マルコフ決定過程 (MDP) としてセグメントワイドトラッキングを行う新しいフレームワークを提案する。
提案手法はQ-Learningを利用してセグメントグラフを動的に探索し,エッジウェイトをオンデマンドで計算し,検索空間を適応的に拡張する。
典型的な管状構造データセットに対する実験的な再試行により,本手法は最先端のポイントワイドおよびセグメントワイドアプローチを著しく上回ることを示した。
論文 参考訳(メタデータ) (2025-06-21T11:00:17Z) - Clustering by Nonparametric Smoothing [6.635604919499181]
クラスタリング問題の新たな定式化は、タスクを推定問題として表現するものである。
提案手法は、任意の明示的なモデリング仮定を回避し、非パラメトリックな平滑化の柔軟な推定ポテンシャルを利用する。
提案手法の強い性能を示すために,公開データセットの大規模なコレクションに関する実験が用いられている。
論文 参考訳(メタデータ) (2025-03-12T07:44:11Z) - CART: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
クロスモーダル検索は、異なるモーダルデータの相互作用を通じて、クエリと意味的に関連するインスタンスを検索することを目的としている。
従来のソリューションでは、クエリと候補の間のスコアを明示的に計算するために、シングルトウワーまたはデュアルトウワーのフレームワークを使用している。
粗大なセマンティックモデリングに基づく生成的クロスモーダル検索フレームワーク(CART)を提案する。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - Query-Efficient Correlation Clustering with Noisy Oracle [17.11782578276788]
共同マルチアーマッドバンド(PE-CMAB)における純粋探索のパラダイムに根ざしたオンライン学習問題の2つの新しい定式化を導入する。
我々は,サンプリング戦略と古典近似アルゴリズムを組み合わせるアルゴリズムを設計し,それらの理論的保証について検討する。
本研究は, PE-CMABの場合のクラスタリング時アルゴリズムの最初の例であり, 基礎となるオフライン最適化問題はNP-hardである。
論文 参考訳(メタデータ) (2024-02-02T13:31:24Z) - Learning Linear Non-Gaussian Polytree Models [2.4493299476776778]
ポリツリーであるグラフを効率的に学習するアルゴリズムを提案する。
提案手法は,まず無向木構造を学習するChow-Liuアルゴリズムと,エッジを指向する新しいスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2022-08-13T18:20:10Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Centralized Information Interaction for Salient Object Detection [68.8587064889475]
U字型構造は、多スケールの機能を効率的に組み合わせるサリエント物体検出に長けている。
本稿では,これらの接続を集中化することにより,相互に相互に情報交換を行うことができることを示す。
本手法は, ボトムアップ経路とトップダウン経路の接続を置換することにより, 既存のU字型サルエント物体検出手法と協調することができる。
論文 参考訳(メタデータ) (2020-12-21T12:42:06Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Finding the Homology of Decision Boundaries with Active Learning [26.31885403636642]
本稿では,意思決定境界のホモロジーを回復するための能動的学習アルゴリズムを提案する。
我々のアルゴリズムは、ラベルを必要とするサンプルを逐次かつ適応的に選択する。
いくつかのデータセットの実験では、ホモロジーを回復する際のサンプルの複雑さの改善が示されている。
論文 参考訳(メタデータ) (2020-11-19T04:22:06Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。