論文の概要: Using Modular Arithmetic Optimized Neural Networks To Crack Affine Cryptographic Schemes Efficiently
- arxiv url: http://arxiv.org/abs/2507.14229v1
- Date: Thu, 17 Jul 2025 04:54:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.785101
- Title: Using Modular Arithmetic Optimized Neural Networks To Crack Affine Cryptographic Schemes Efficiently
- Title(参考訳): Modular ArithmeticOptimized Neural Networks を用いたアフィン暗号アルゴリズムの効率的な解読
- Authors: Vanja Stojanović, Žiga Lesar, CIril Bohak,
- Abstract要約: ハイブリッドニューラルネットワークアーキテクチャを用いたアフィン暗号の暗号解析について検討する。
提案手法は, 生の暗号文列を処理するモジュール分岐と, 文字の周波数特性を利用する統計分岐を統合する。
- 参考スコア(独自算出の注目度): 0.27309692684728615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the cryptanalysis of affine ciphers using a hybrid neural network architecture that combines modular arithmetic-aware and statistical feature-based learning. Inspired by recent advances in interpretable neural networks for modular arithmetic and neural cryptanalysis of classical ciphers, our approach integrates a modular branch that processes raw ciphertext sequences and a statistical branch that leverages letter frequency features. Experiments on datasets derived from natural English text demonstrate that the hybrid model attains high key recovery accuracy for short and moderate ciphertexts, outperforming purely statistical approaches for the affine cipher. However, performance degrades for very long ciphertexts, highlighting challenges in model generalization.
- Abstract(参考訳): 本稿では,モジュール型算術認識と統計的特徴ベース学習を組み合わせたハイブリッドニューラルネットワークアーキテクチャを用いて,アフィン暗号の暗号解析を行う。
古典暗号のモジュラー演算とニューラル暗号解析のための解釈可能なニューラルネットワークの最近の進歩に触発されて,本手法では,生の暗号文列を処理するモジュール分岐と,レター周波数特性を利用する統計分岐を統合した。
自然英文から派生したデータセットの実験により、このハイブリッドモデルは、短く中程度の暗号文に対して高い鍵回復精度を達成し、アフィン暗号に対する純粋に統計的アプローチよりも優れていることが示された。
しかし、非常に長い暗号文では性能が低下し、モデル一般化の課題が浮き彫りになった。
関連論文リスト
- Keyed Chaotic Dynamics for Privacy-Preserving Neural Inference [0.0]
この研究は、神経推論の安全性を保証するための新しい暗号化手法を導入する。
鍵条件付きカオスグラフ動的システムを構築することにより、ニューラルネットワーク内の実数値テンソルの暗号化と復号化が可能となる。
論文 参考訳(メタデータ) (2025-05-29T17:05:42Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
本稿では,機械学習アルゴリズムの新たな2つの応用法を提案する。
これらのアルゴリズムは、監査設定で容易に適用でき、暗号システムの堅牢性を評価することができる。
本稿では,DES,RSA,AES ECBなど,IND-CPAの安全でない暗号化スキームを高精度に識別する。
論文 参考訳(メタデータ) (2025-01-25T04:53:36Z) - Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
スパースコーディングとディープラーニングの交差点を探索し,特徴抽出能力の理解を深める。
我々は、畳み込みニューラルネットワーク(CNN)のスパース特徴抽出能力の収束率を導出する。
スパースコーディングとCNNの強いつながりにインスパイアされた私たちは、ニューラルネットワークがよりスパースな機能を学ぶように促すトレーニング戦略を探求する。
論文 参考訳(メタデータ) (2024-08-10T12:43:55Z) - Tram: A Token-level Retrieval-augmented Mechanism for Source Code Summarization [76.57699934689468]
ニューラルモデルの性能を高めるために,デコーダ側で詳細なTokenレベル検索強化機構(Tram)を提案する。
文脈的コードセマンティクスの取得におけるトークンレベルの検索の課題を克服するために,コードセマンティクスを個々の要約トークンに統合することを提案する。
論文 参考訳(メタデータ) (2023-05-18T16:02:04Z) - Understanding the Mapping of Encode Data Through An Implementation of
Quantum Topological Analysis [0.7106986689736827]
複素ヒルベルト空間に埋め込まれたデータのトポロジーを解析することにより,符号化手法の違いを可視化できることを示す。
提案手法は,異なる量子機械学習モデルにおいて慎重に検討する必要があることを示唆する。
論文 参考訳(メタデータ) (2022-09-21T18:46:08Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Generative Deep Learning Techniques for Password Generation [0.5249805590164902]
パスワード推測に照らして,深層学習モデルと確率ベースモデルの幅広い収集について検討した。
本研究では,最先端サンプリング性能を示す変分オートエンコーダを用いた新しい生成深層学習モデルを提案する。
我々は、よく知られたデータセット上の統一制御フレームワークにおいて、徹底的な経験分析を行う。
論文 参考訳(メタデータ) (2020-12-10T14:11:45Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z) - Cryptotree: fast and accurate predictions on encrypted structured data [0.0]
ホモモルフィック暗号化(HE)は、入力と出力の両方が暗号化される暗号化データ上での計算を可能にする能力で認められている。
線形回帰と比較して非常に強力な学習手法であるランダムフォレスト(RF)の利用を可能にするフレームワークであるCryptotreeを提案する。
論文 参考訳(メタデータ) (2020-06-15T11:48:01Z) - Improved Code Summarization via a Graph Neural Network [96.03715569092523]
一般に、ソースコード要約技術はソースコードを入力として使用し、自然言語記述を出力する。
これらの要約を生成するために、ASTのデフォルト構造によくマッチするグラフベースのニューラルアーキテクチャを使用するアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:36:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。