論文の概要: Manimator: Transforming Research Papers into Visual Explanations
- arxiv url: http://arxiv.org/abs/2507.14306v1
- Date: Fri, 18 Jul 2025 18:28:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.829382
- Title: Manimator: Transforming Research Papers into Visual Explanations
- Title(参考訳): Manimator: 研究論文をビジュアル説明に変換する
- Authors: Samarth P, Vyoman Jain, Shiva Golugula, Motamarri Sai Sathvik,
- Abstract要約: 我々は,研究論文や自然言語のプロンプトを解説アニメーションに変換するオープンソースシステム,Manimatorを紹介した。
Manimatorは、LLMが入力テキストまたは研究論文PDFを解釈して構造化されたシーン記述を生成するパイプラインを使用する。
別の LLM は、この記述を実行可能な Manim Python コードに変換する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding complex scientific and mathematical concepts, particularly those presented in dense research papers, poses a significant challenge for learners. Dynamic visualizations can greatly enhance comprehension, but creating them manually is time-consuming and requires specialized knowledge and skills. We introduce manimator, an open-source system that leverages Large Language Models to transform research papers and natural language prompts into explanatory animations using the Manim engine. Manimator employs a pipeline where an LLM interprets the input text or research paper PDF to generate a structured scene description outlining key concepts, mathematical formulas, and visual elements and another LLM translates this description into executable Manim Python code. We discuss its potential as an educational tool for rapidly creating engaging visual explanations for complex STEM topics, democratizing the creation of high-quality educational content.
- Abstract(参考訳): 複雑な科学的・数学的概念、特に高密度な研究論文で提示された概念を理解することは、学習者にとって重要な課題である。
ダイナミックビジュアライゼーションは理解を大幅に強化するが、それらを手作業で作成するには時間がかかり、専門的な知識とスキルが必要になる。
我々は,研究論文や自然言語のプロンプトをManimエンジンを用いた説明的アニメーションに変換するために,Large Language Modelsを活用したオープンソースシステムであるManimatorを紹介した。
Manimatorは、LLMが入力テキストまたは研究論文PDFを解釈して、重要な概念、数学的公式、視覚要素を概説する構造化シーン記述を生成するパイプラインを使用し、別のLCMは、この記述を実行可能なManim Pythonコードに変換する。
我々は、複雑なSTEMトピックの視覚的説明を迅速に作成し、高品質な教育コンテンツの作成を民主化するための教育ツールとしての可能性について論じる。
関連論文リスト
- Exploring Multimodal Prompt for Visualization Authoring with Large Language Models [12.43647167483504]
可視化オーサリングの文脈において,大言語モデル(LLM)が不明瞭あるいは不完全なテキストプロンプトをどのように解釈するかを検討する。
テキストプロンプトに補完的な入力モダリティとして視覚的プロンプトを導入し,ユーザの意図を明らかにする。
テキストやスケッチ,直接操作など,マルチモーダルなプロンプトを使って視覚化を簡単に作成できるVisPilotを設計する。
論文 参考訳(メタデータ) (2025-04-18T14:00:55Z) - Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation [19.4261670152456]
モデルが補助線,点,角などの視覚的キーポイントを識別できるかどうかを評価し,これらのキー要素を組み込んだ説明を生成するためのマルチモーダルソリューション説明タスクを提案する。
我々の経験的結果は、最近の大規模オープンソースおよびクローズドソースモデル、ほとんどの一般オープンソースモデル、数学特殊主義モデルを除いて、マルチモーダルソリューションの説明タスクに苦戦していることを示している。
このことは、現在のLLMの教育的文脈における視覚的基盤による推論と説明能力において、大きなギャップを浮き彫りにしている。
論文 参考訳(メタデータ) (2025-04-04T06:03:13Z) - Instruction-Guided Editing Controls for Images and Multimedia: A Survey in LLM era [50.19334853510935]
命令ベースの編集の最近の進歩は、ユーザ意図と複雑な編集操作の間の橋渡しとして自然言語を用いて、視覚コンテンツとの直感的な対話を可能にしている。
我々は,エンターテイメントから教育に至るまで,様々な産業において強力なビジュアル編集を民主化することを目指している。
論文 参考訳(メタデータ) (2024-11-15T05:18:15Z) - Visual Prompting in Multimodal Large Language Models: A Survey [95.75225825537528]
MLLM(Multimodal large language model)は、視覚機能を備えた事前訓練された多言語モデル(LLM)である。
ビジュアルプロンプトはよりきめ細かな自由形式のビジュアルインストラクションのために現れた。
本稿では,視覚的プロンプト,即時生成,構成的推論,即時学習に焦点をあてる。
論文 参考訳(メタデータ) (2024-09-05T08:47:34Z) - LLaVA-Read: Enhancing Reading Ability of Multimodal Language Models [60.67899965748755]
両ビジュアルエンコーダとビジュアルテキストエンコーダを併用したマルチモーダル大規模言語モデルであるLLaVA-Readを提案する。
我々の研究は、ビジュアルテキスト理解は依然としてオープンな課題であり、将来のマルチモーダルシステムにとって効率的なビジュアルテキストエンコーダが不可欠であることを示唆している。
論文 参考訳(メタデータ) (2024-07-27T05:53:37Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - ClawMachine: Learning to Fetch Visual Tokens for Referential Comprehension [71.03445074045092]
我々はClawMachineを提案し、視覚トークンのグループのトークン集合を用いて各エンティティに明示的に通知する新しい方法論を提案する。
追加構文を用いることなく視覚的参照タスクのプロンプトと応答を統一する手法を提案する。
ClawMachineは、高い効率でシーンレベルおよび参照理解タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-06-17T08:39:16Z) - Large Language Models for Scientific Information Extraction: An
Empirical Study for Virology [0.0]
談話に基づく学術コミュニケーションにおける構造的・意味的内容表現の利用を擁護する。
ウィキペディアのインフォボックスや構造化されたAmazon製品記述といったツールにヒントを得て、構造化された学術貢献要約を生成するための自動アプローチを開発しました。
以上の結果から,FLAN-T5のパラメータは現状のGPT-davinciよりも1000倍少ないことが示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:04:55Z) - DoraemonGPT: Toward Understanding Dynamic Scenes with Large Language Models (Exemplified as A Video Agent) [73.10899129264375]
本稿では,LLMによる動的シーン理解のための包括的かつ概念的にエレガントなシステムであるドラモンGPTについて検討する。
質問/タスクのあるビデオが与えられた場合、DoraemonGPTは入力されたビデオをタスク関連の属性を格納するシンボリックメモリに変換することから始める。
我々は,DoraemonGPTの有効性を,3つのベンチマークといくつかのアプリ内シナリオで広範囲に評価した。
論文 参考訳(メタデータ) (2024-01-16T14:33:09Z) - Comparing Code Explanations Created by Students and Large Language
Models [4.526618922750769]
コードについて推論し、その目的を説明することは、コンピュータ科学者にとって基本的なスキルである。
可能なすべてのインプットに対してコードがどのように振る舞うかを、高いレベルの抽象化で記述する能力は、コード記述スキルと強く相関する。
既存の教育的なアプローチは、要求に応じてコード説明を作成するなど、コードを説明する能力を足場に置いていますが、現在、大規模な教室ではうまくスケールしていません。
論文 参考訳(メタデータ) (2023-04-08T06:52:54Z) - Multimodal Lecture Presentations Dataset: Understanding Multimodality in
Educational Slides [57.86931911522967]
学習内容のマルチモーダル理解における機械学習モデルの能力を検証する。
このデータセットには,180時間以上のビデオと9000時間以上のスライドが,各科目から10人の講師が参加している。
マルチモーダル・トランスフォーマーであるPolyViLTを導入する。
論文 参考訳(メタデータ) (2022-08-17T05:30:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。