Rethinking Individual Fairness in Deepfake Detection
- URL: http://arxiv.org/abs/2507.14326v2
- Date: Wed, 30 Jul 2025 09:45:55 GMT
- Title: Rethinking Individual Fairness in Deepfake Detection
- Authors: Aryana Hou, Li Lin, Justin Li, Shu Hu,
- Abstract summary: Generative AI models have substantially improved the realism of synthetic media, yet their misuse through sophisticated DeepFakes poses significant risks.<n>Despite recent advances in deepfake detection, fairness remains inadequately addressed, enabling deepfake markers to exploit biases against specific populations.<n>We propose the first generalizable framework that can be integrated into existing deepfake detectors to enhance individual fairness and generalization.
- Score: 7.926090411049054
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative AI models have substantially improved the realism of synthetic media, yet their misuse through sophisticated DeepFakes poses significant risks. Despite recent advances in deepfake detection, fairness remains inadequately addressed, enabling deepfake markers to exploit biases against specific populations. While previous studies have emphasized group-level fairness, individual fairness (i.e., ensuring similar predictions for similar individuals) remains largely unexplored. In this work, we identify for the first time that the original principle of individual fairness fundamentally fails in the context of deepfake detection, revealing a critical gap previously unexplored in the literature. To mitigate it, we propose the first generalizable framework that can be integrated into existing deepfake detectors to enhance individual fairness and generalization. Extensive experiments conducted on leading deepfake datasets demonstrate that our approach significantly improves individual fairness while maintaining robust detection performance, outperforming state-of-the-art methods. The code is available at https://github.com/Purdue-M2/Individual-Fairness-Deepfake-Detection.
Related papers
- Fair-FLIP: Fair Deepfake Detection with Fairness-Oriented Final Layer Input Prioritising [1.3348326328808557]
Deepfake detection methods often exhibit biases across demographic attributes such as ethnicity and gender.<n>We propose a novel post-processing approach, referred to as Fairness-Oriented Final Layer Input Prioritising (Fair-FLIP)<n>We show that Fair-FLIP can enhance fairness metrics by up to 30% while maintaining baseline accuracy, with only a negligible reduction of 0.25%.
arXiv Detail & Related papers (2025-07-11T15:17:02Z) - Fair Deepfake Detectors Can Generalize [51.21167546843708]
We show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions.<n>Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals.<n>DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art
arXiv Detail & Related papers (2025-07-03T14:10:02Z) - Cross-Branch Orthogonality for Improved Generalization in Face Deepfake Detection [43.2796409299818]
Deepfakes are becoming a nuisance to law enforcement authorities and the general public.<n>Existing deepfake detectors are struggling to keep up with the pace of improvements in deepfake generation.<n>This paper proposes a new strategy that leverages coarse-to-fine spatial information, semantic information, and their interactions.
arXiv Detail & Related papers (2025-05-08T01:49:53Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
We first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods.<n>We design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results.<n>We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates.
arXiv Detail & Related papers (2024-07-19T14:53:18Z) - Preserving Fairness Generalization in Deepfake Detection [14.485069525871504]
Deepfake detection models can result in unfair performance disparities among demographic groups, such as race and gender.
We propose the first method to address the fairness generalization problem in deepfake detection by simultaneously considering features, loss, and optimization aspects.
Our method employs disentanglement learning to extract demographic and domain-agnostic features, fusing them to encourage fair learning across a flattened loss landscape.
arXiv Detail & Related papers (2024-02-27T05:47:33Z) - Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning [0.0]
Deepfake technology has raised concerns about the authenticity of digital content, necessitating the development of effective detection methods.
Adversaries can manipulate deepfake videos with small, imperceptible perturbations that can deceive the detection models into producing incorrect outputs.
We introduce Adversarial Feature Similarity Learning (AFSL), which integrates three fundamental deep feature learning paradigms.
arXiv Detail & Related papers (2024-02-06T11:35:05Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
We introduce GazeForensics, an innovative DeepFake detection method that utilizes gaze representation obtained from a 3D gaze estimation model.
Experiment results reveal that our proposed GazeForensics outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-11-13T04:48:33Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Improving Fairness in Deepfake Detection [38.999205139257164]
biases in the data used to train deepfake detectors can lead to disparities in detection accuracy across different races and genders.
We propose novel loss functions that handle both the setting where demographic information is available as well as the case where this information is absent.
arXiv Detail & Related papers (2023-06-29T02:19:49Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.