Spectator Leakage Elimination in CZ Gates via Tunable Coupler Interference on a Superconducting Quantum Processor
- URL: http://arxiv.org/abs/2507.14531v1
- Date: Sat, 19 Jul 2025 08:20:44 GMT
- Title: Spectator Leakage Elimination in CZ Gates via Tunable Coupler Interference on a Superconducting Quantum Processor
- Authors: Peng Wang, Bin-Han Lu, Tian-Le Wang, Sheng Zhang, Zhao-Yun Chen, Hai-Feng Zhang, Ren-Ze Zhao, Xiao-Yan Yang, Ze-An Zhao, Zhuo-Zhi Zhang, Xiang-Xiang Song, Yu-Chun Wu, Peng Duan, Guo-Ping Guo,
- Abstract summary: We introduce a leakage mitigation strategy based on dynamically reshaping the system Hamiltonian.<n>We experimentally demonstrate that this dynamic control scheme suppresses leakage rates to the order of $10-4$ across a wide near-resonant detuning range.
- Score: 8.898260632099145
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Spectator-induced leakage poses a fundamental challenge to scalable quantum computing, particularly as frequency collisions become unavoidable in multi-qubit processors. We introduce a leakage mitigation strategy based on dynamically reshaping the system Hamiltonian. Our technique utilizes a tunable coupler to enforce a block-diagonal structure on the effective Hamiltonian governing near-resonant spectator interactions, confining the gate dynamics to a two-dimensional invariant subspace and thus preventing leakage by construction. On a multi-qubit superconducting processor, we experimentally demonstrate that this dynamic control scheme suppresses leakage rates to the order of $10^{-4}$ across a wide near-resonant detuning range. The method also scales effectively with the number of spectators. With three simultaneous spectators, the total leakage remains below the threshold relevant for surface code error correction. This approach eases the tension between dense frequency packing and high-fidelity gate operation, establishing dynamic Hamiltonian engineering as an essential tool for advancing fault-tolerant quantum computing.
Related papers
- A microwave-activated high-fidelity three-qubit gate scheme for fixed-frequency superconducting qubits [18.285015455084935]
We propose a microwave-activated three-qubit gate protocol for fixed-frequency transmon qubits in the large-detuning regime.<n> numerical simulations demonstrate a high average gate fidelity exceeding $99.9%$.<n>This strategy advances scalable quantum computing systems by improving coherence properties, reducing spectral congestion, and expanding the experimental toolkit for error-resilient quantum operations.
arXiv Detail & Related papers (2025-04-30T06:16:16Z) - A Linear Quantum Coupler for Clean Bosonic Control [40.363378379378524]
An ideal quantum nonlinearity would selectively activate desired coherent processes at high strength.<n>The wide bandwidth of the Josephson nonlinearity makes this difficult, with undesired drive-induced transitions and decoherence limiting qubit readout, gates, couplers and amplifiers.<n>We propose a novel mixer that combines both these strengths, with engineered selection rules that make it essentially linear (not just Kerr-free) when idle, and activate clean parametric processes even when driven at high strength.
arXiv Detail & Related papers (2025-01-29T22:26:14Z) - Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum
Circuits [12.29963230632145]
We study the use of dynamical decoupling in characterizing undesired two-qubit couplings and the underlying single-qubit decoherence.
We develop a syncopated decoupling technique which protects against decoherence and selectively targets unwanted two-qubit interactions.
arXiv Detail & Related papers (2024-03-12T17:18:35Z) - Lattice Hamiltonians and Stray Interactions Within Quantum Processors [0.564232659769944]
Developing Hamiltonian models for quantum processors with many qubits on the same chip is crucial for advancing quantum computing technologies.<n>This study underscores the importance of incorporating lattice Hamiltonians into quantum circuit design.<n>We find that loosely decoupled qubits result in weaker stray interactions and higher gate fidelity, challenging conventional assumptions.
arXiv Detail & Related papers (2024-02-14T12:52:48Z) - Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Towards Quantum Gates with Wide Operating Margins [0.0]
We introduce a composite qubit and gate scheme that achieves wide margins by use of transistor-like nonlinearities.
We focus on a resource-effcient variation that exploits biased noise and preserves bias under gate operation.
arXiv Detail & Related papers (2022-02-21T19:00:58Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable
coupler [40.456646238780195]
Two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation.
We present a systematic approach that goes beyond the dispersive approximation to exploit the engineered level structure of the coupler and optimize its control.
We experimentally demonstrate CZ and $ZZ$-free iSWAP gates with two-qubit interaction fidelities of $99.76 pm 0.07$% and $99.87 pm 0.23$%, respectively.
arXiv Detail & Related papers (2020-11-02T19:09:43Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.