論文の概要: Rec-AD: An Efficient Computation Framework for FDIA Detection Based on Tensor Train Decomposition and Deep Learning Recommendation Model
- arxiv url: http://arxiv.org/abs/2507.14668v2
- Date: Mon, 04 Aug 2025 10:12:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 14:07:57.588926
- Title: Rec-AD: An Efficient Computation Framework for FDIA Detection Based on Tensor Train Decomposition and Deep Learning Recommendation Model
- Title(参考訳): Rec-AD: テンソルトレイン分解とディープラーニング勧告モデルに基づくFDIA検出のための効率的な計算フレームワーク
- Authors: Yunfeng Li, Junhong Liu, Zhaohui Yang, Guofu Liao, Chuyun Zhang,
- Abstract要約: 深層学習モデルは、スマートグリッドにおけるFalse Data Injection Attack(FDIA)検出に広く採用されている。
本稿では、列車分解と深層学習勧告モデル(DLRM)を統合する計算効率の良いフレームワークRec-ADを提案する。
PyTorchと完全に互換性があるため、Rec-ADはコード修正なしで既存のFDIA検出システムに統合できる。
- 参考スコア(独自算出の注目度): 9.222461989780735
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep learning models have been widely adopted for False Data Injection Attack (FDIA) detection in smart grids due to their ability to capture unstructured and sparse features. However, the increasing system scale and data dimensionality introduce significant computational and memory burdens, particularly in large-scale industrial datasets, limiting detection efficiency. To address these issues, this paper proposes Rec-AD, a computationally efficient framework that integrates Tensor Train decomposition with the Deep Learning Recommendation Model (DLRM). Rec-AD enhances training and inference efficiency through embedding compression, optimized data access via index reordering, and a pipeline training mechanism that reduces memory communication overhead. Fully compatible with PyTorch, Rec-AD can be integrated into existing FDIA detection systems without code modifications. Experimental results show that Rec-AD significantly improves computational throughput and real-time detection performance, narrowing the attack window and increasing attacker cost. These advancements strengthen edge computing capabilities and scalability, providing robust technical support for smart grid security.
- Abstract(参考訳): 深層学習モデルは、非構造化でスパースな特徴をキャプチャできるため、スマートグリッドにおけるFalse Data Injection Attack(FDIA)検出に広く採用されている。
しかし、システムスケールとデータ次元の増大は、特に大規模産業データセットにおいて、大幅な計算とメモリ負荷をもたらし、検出効率が制限される。
本稿では,テンソルトレイン分解と深層学習勧告モデル(DLRM)を統合した計算効率の高いフレームワークRec-ADを提案する。
Rec-ADは、圧縮の埋め込みによるトレーニングと推論の効率の向上、インデックスの並べ替えによるデータアクセスの最適化、メモリ通信オーバーヘッドを低減するパイプライントレーニングメカニズムを備えている。
PyTorchと完全に互換性があるため、Rec-ADはコード修正なしで既存のFDIA検出システムに統合できる。
実験の結果,Rec-ADは計算スループットとリアルタイム検出性能を著しく向上し,攻撃窓を狭くし,攻撃コストを増大させることがわかった。
これらの進歩はエッジコンピューティング能力とスケーラビリティを強化し、スマートグリッドセキュリティの堅牢な技術的サポートを提供する。
関連論文リスト
- Cost-effective Reduced-Order Modeling via Bayesian Active Learning [12.256032958843065]
本研究では,不確実性を意識したベイズ固有分解(POD)に基づく能動的学習フレームワークBayPOD-ALを提案する。
棒の温度変化を予測する実験結果から,ベイポッドALの有効性が示唆された。
トレーニングデータセットよりも高時間分解能のデータセット上で,ベイポD-ALの性能を評価することにより,ベイポD-ALの一般化性と効率を実証する。
論文 参考訳(メタデータ) (2025-06-27T21:23:37Z) - Feature Selection via GANs (GANFS): Enhancing Machine Learning Models for DDoS Mitigation [0.0]
本稿では,分散型サービス拒否(DDoS)攻撃を検出するGANFS(Generative Adversarial Network-based Feature Selection)手法を提案する。
GANを攻撃トラフィックに限定して訓練することにより、GANFSは、完全な監視に頼ることなく、機能の重要性を効果的にランク付けする。
その結果は、より適応的でスケーラブルな検出システムを構築するために、生成学習モデルをサイバーセキュリティパイプラインに統合する可能性を示している。
論文 参考訳(メタデータ) (2025-04-21T20:27:33Z) - DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users [52.9870460238443]
学習可能なDolph-Tschebyscheffアンテナアレイを用いた深部強化学習に基づくブラインドビームフォーミング手法を提案する。
シミュレーションの結果,提案手法は最良値に非常に近いデータレートをサポートできることが示唆された。
論文 参考訳(メタデータ) (2025-02-03T11:50:43Z) - Adaptive Data Exploitation in Deep Reinforcement Learning [50.53705050673944]
深層強化学習(RL)における**データ効率**と**一般化**を強化する強力なフレームワークであるADEPTを紹介する。
具体的には、ADEPTはマルチアーム・バンディット(MAB)アルゴリズムを用いて、異なる学習段階にわたるサンプルデータの使用を適応的に管理する。
Procgen、MiniGrid、PyBulletなどのベンチマークでADEPTをテストする。
論文 参考訳(メタデータ) (2025-01-22T04:01:17Z) - Retrieval Instead of Fine-tuning: A Retrieval-based Parameter Ensemble for Zero-shot Learning [22.748835458594744]
Retrievalをベースとする。
Ensemble (RPE) - ベクトル化されたデータベースを作成する新しい方法。
Low-Rank Adaptations (LoRA)
RPEは、広範囲なトレーニングの必要性を最小限に抑え、ラベル付きデータの要求を排除し、特にゼロショット学習に有効である。
RPEは、生のデータにアクセスせずにモデルパラメータを変更するため、ヘルスケアのようなプライバシに敏感なドメインに適している。
論文 参考訳(メタデータ) (2024-10-13T16:28:38Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
異常検出(AD)は、将来の通信システムのレジリエンスを確保するための重要な要素として、ますます認識されている。
この研究は、不完全測定を用いたネットワークフローにおけるADについて考察する。
本稿では,正規化モデル適合性に基づくブロック帰属凸近似アルゴリズムを提案する。
ベイズ的アプローチに触発されて、我々はモデルアーキテクチャを拡張し、フローごとのオンライン適応とステップごとの統計処理を行う。
論文 参考訳(メタデータ) (2024-09-17T19:59:57Z) - CE-SSL: Computation-Efficient Semi-Supervised Learning for ECG-based Cardiovascular Diseases Detection [16.34314710823127]
本稿では,ECG を用いた計算効率の高い CVD 検出のための計算効率の高い半教師付き学習パラダイム (CE-SSL) を提案する。
これは、限られた監督と高い計算効率で、下流データセットに事前訓練されたモデルの堅牢な適応を可能にする。
CE-SSLは、マルチラベルCVDの検出における最先端メソッドよりも優れているだけでなく、GPUフットプリント、トレーニング時間、パラメータストレージスペースも少ない。
論文 参考訳(メタデータ) (2024-06-20T14:45:13Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - A Survey on Impact of Transient Faults on BNN Inference Accelerators [0.9667631210393929]
ビッグデータブームにより、非常に大きなデータセットへのアクセスと分析が容易になります。
ディープラーニングモデルは、計算能力と極めて高いメモリアクセスを必要とする。
本研究では,ソフトエラーが独自の深層学習アルゴリズムに与える影響が画像の劇的な誤分類を引き起こす可能性を実証した。
論文 参考訳(メタデータ) (2020-04-10T16:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。