Rethinking Suicidal Ideation Detection: A Trustworthy Annotation Framework and Cross-Lingual Model Evaluation
- URL: http://arxiv.org/abs/2507.14693v1
- Date: Sat, 19 Jul 2025 16:54:36 GMT
- Title: Rethinking Suicidal Ideation Detection: A Trustworthy Annotation Framework and Cross-Lingual Model Evaluation
- Authors: Amina Dzafic, Merve Kavut, Ulya Bayram,
- Abstract summary: Suicidal ideation detection is critical for real-time suicide prevention, yet its progress faces two under-explored challenges.<n>Most available datasets are in English, but even among these, high-quality, human-annotated data remains scarce.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Suicidal ideation detection is critical for real-time suicide prevention, yet its progress faces two under-explored challenges: limited language coverage and unreliable annotation practices. Most available datasets are in English, but even among these, high-quality, human-annotated data remains scarce. As a result, many studies rely on available pre-labeled datasets without examining their annotation process or label reliability. The lack of datasets in other languages further limits the global realization of suicide prevention via artificial intelligence (AI). In this study, we address one of these gaps by constructing a novel Turkish suicidal ideation corpus derived from social media posts and introducing a resource-efficient annotation framework involving three human annotators and two large language models (LLMs). We then address the remaining gaps by performing a bidirectional evaluation of label reliability and model consistency across this dataset and three popular English suicidal ideation detection datasets, using transfer learning through eight pre-trained sentiment and emotion classifiers. These transformers help assess annotation consistency and benchmark model performance against manually labeled data. Our findings underscore the need for more rigorous, language-inclusive approaches to annotation and evaluation in mental health natural language processing (NLP) while demonstrating the questionable performance of popular models with zero-shot transfer learning. We advocate for transparency in model training and dataset construction in mental health NLP, prioritizing data and model reliability.
Related papers
- Mitigating Biases to Embrace Diversity: A Comprehensive Annotation Benchmark for Toxic Language [0.0]
This study introduces a prescriptive annotation benchmark grounded in humanities research to ensure consistent, unbiased labeling of offensive language.
We contribute two newly annotated datasets that achieve higher inter-annotator agreement between human and language model (LLM) annotations.
arXiv Detail & Related papers (2024-10-17T08:10:24Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Zero-shot Cross-lingual Stance Detection via Adversarial Language Adaptation [7.242609314791262]
This paper introduces a novel approach to zero-shot cross-lingual stance detection, Multilingual Translation-Augmented BERT (MTAB)
Our technique employs translation augmentation to improve zero-shot performance and pairs it with adversarial learning to further boost model efficacy.
We demonstrate the effectiveness of our proposed approach, showcasing improved results in comparison to a strong baseline model as well as ablated versions of our model.
arXiv Detail & Related papers (2024-04-22T16:56:43Z) - Beyond Gradient and Priors in Privacy Attacks: Leveraging Pooler Layer Inputs of Language Models in Federated Learning [24.059033969435973]
This paper presents a two-stage privacy attack strategy that targets the vulnerabilities in the architecture of contemporary language models.
Our comparative experiments demonstrate superior attack performance across various datasets and scenarios.
We call for the community to recognize and address these potential privacy risks in designing large language models.
arXiv Detail & Related papers (2023-12-10T01:19:59Z) - When a Language Question Is at Stake. A Revisited Approach to Label
Sensitive Content [0.0]
Article revisits an approach of pseudo-labeling sensitive data on the example of Ukrainian tweets covering the Russian-Ukrainian war.
We provide a fundamental statistical analysis of the obtained data, evaluation of models used for pseudo-labelling, and set further guidelines on how the scientists can leverage the corpus.
arXiv Detail & Related papers (2023-11-17T13:35:10Z) - Supervised Learning and Large Language Model Benchmarks on Mental Health Datasets: Cognitive Distortions and Suicidal Risks in Chinese Social Media [23.49883142003182]
We introduce two novel datasets from Chinese social media: SOS-HL-1K for suicidal risk classification and SocialCD-3K for cognitive distortions detection.
We propose a comprehensive evaluation using two supervised learning methods and eight large language models (LLMs) on the proposed datasets.
arXiv Detail & Related papers (2023-09-07T08:50:46Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
We propose a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks.
Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena.
For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge.
arXiv Detail & Related papers (2023-07-16T15:18:25Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - ConNER: Consistency Training for Cross-lingual Named Entity Recognition [96.84391089120847]
Cross-lingual named entity recognition suffers from data scarcity in the target languages.
We propose ConNER as a novel consistency training framework for cross-lingual NER.
arXiv Detail & Related papers (2022-11-17T07:57:54Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.