Mitigating Biases to Embrace Diversity: A Comprehensive Annotation Benchmark for Toxic Language
- URL: http://arxiv.org/abs/2410.13313v1
- Date: Thu, 17 Oct 2024 08:10:24 GMT
- Title: Mitigating Biases to Embrace Diversity: A Comprehensive Annotation Benchmark for Toxic Language
- Authors: Xinmeng Hou,
- Abstract summary: This study introduces a prescriptive annotation benchmark grounded in humanities research to ensure consistent, unbiased labeling of offensive language.
We contribute two newly annotated datasets that achieve higher inter-annotator agreement between human and language model (LLM) annotations.
- Score: 0.0
- License:
- Abstract: This study introduces a prescriptive annotation benchmark grounded in humanities research to ensure consistent, unbiased labeling of offensive language, particularly for casual and non-mainstream language uses. We contribute two newly annotated datasets that achieve higher inter-annotator agreement between human and language model (LLM) annotations compared to original datasets based on descriptive instructions. Our experiments show that LLMs can serve as effective alternatives when professional annotators are unavailable. Moreover, smaller models fine-tuned on multi-source LLM-annotated data outperform models trained on larger, single-source human-annotated datasets. These findings highlight the value of structured guidelines in reducing subjective variability, maintaining performance with limited data, and embracing language diversity. Content Warning: This article only analyzes offensive language for academic purposes. Discretion is advised.
Related papers
- ImpScore: A Learnable Metric For Quantifying The Implicitness Level of Language [40.4052848203136]
Implicit language is essential for natural language processing systems to achieve precise text understanding and facilitate natural interactions with users.
This paper develops a scalar metric that quantifies the implicitness level of language without relying on external references.
ImpScore is trained using pairwise contrastive learning on a specially curated dataset comprising $112,580$ (implicit sentence, explicit sentence) pairs.
arXiv Detail & Related papers (2024-11-07T20:23:29Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Dissecting vocabulary biases datasets through statistical testing and
automated data augmentation for artifact mitigation in Natural Language
Inference [3.154631846975021]
We focus on investigating dataset artifacts and developing strategies to address these issues.
We propose several automatic data augmentation strategies spanning character to word levels.
Experiments demonstrate that the proposed approaches effectively enhance model accuracy and reduce biases by up to 0.66% and 1.14%, respectively.
arXiv Detail & Related papers (2023-12-14T08:46:26Z) - Evaluating Neural Language Models as Cognitive Models of Language
Acquisition [4.779196219827507]
We argue that some of the most prominent benchmarks for evaluating the syntactic capacities of neural language models may not be sufficiently rigorous.
When trained on small-scale data modeling child language acquisition, the LMs can be readily matched by simple baseline models.
We conclude with suggestions for better connecting LMs with the empirical study of child language acquisition.
arXiv Detail & Related papers (2023-10-31T00:16:17Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - Evaluation of Faithfulness Using the Longest Supported Subsequence [52.27522262537075]
We introduce a novel approach to evaluate faithfulness of machine-generated text by computing the longest noncontinuous of the claim that is supported by the context.
Using a new human-annotated dataset, we finetune a model to generate Longest Supported Subsequence (LSS)
Our proposed metric demonstrates an 18% enhancement over the prevailing state-of-the-art metric for faithfulness on our dataset.
arXiv Detail & Related papers (2023-08-23T14:18:44Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Reference-less Analysis of Context Specificity in Translation with
Personalised Language Models [3.527589066359829]
This work investigates what extent rich character and film annotations can be leveraged to personalise language models (LMs)
We build LMs which leverage rich contextual information to reduce perplexity by up to 6.5% compared to a non-contextual model.
Our results suggest that the degree to which professional translations in our domain are context-specific can be preserved to a better extent by a contextual machine translation model.
arXiv Detail & Related papers (2023-03-29T12:19:23Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets.
Despite promising results, current models still suffer from generating factually inconsistent summaries.
We leverage factual consistency evaluation models to improve multilingual summarization.
arXiv Detail & Related papers (2022-12-20T19:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.