Uncertainty-aware Probabilistic 3D Human Motion Forecasting via Invertible Networks
- URL: http://arxiv.org/abs/2507.14694v1
- Date: Sat, 19 Jul 2025 17:02:07 GMT
- Title: Uncertainty-aware Probabilistic 3D Human Motion Forecasting via Invertible Networks
- Authors: Yue Ma, Kanglei Zhou, Fuyang Yu, Frederick W. B. Li, Xiaohui Liang,
- Abstract summary: 3D human motion forecasting aims to enable autonomous applications.<n>We propose ProbHMI, which introduces invertible networks to parameterize poses in a disentangled latent space.<n>A forecasting module then explicitly predicts future latent distributions, allowing effective uncertainty quantification.
- Score: 6.671593490919892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D human motion forecasting aims to enable autonomous applications. Estimating uncertainty for each prediction (i.e., confidence based on probability density or quantile) is essential for safety-critical contexts like human-robot collaboration to minimize risks. However, existing diverse motion forecasting approaches struggle with uncertainty quantification due to implicit probabilistic representations hindering uncertainty modeling. We propose ProbHMI, which introduces invertible networks to parameterize poses in a disentangled latent space, enabling probabilistic dynamics modeling. A forecasting module then explicitly predicts future latent distributions, allowing effective uncertainty quantification. Evaluated on benchmarks, ProbHMI achieves strong performance for both deterministic and diverse prediction while validating uncertainty calibration, critical for risk-aware decision making.
Related papers
- Stochasticity in Motion: An Information-Theoretic Approach to Trajectory Prediction [9.365269316773219]
This paper addresses the challenge of uncertainty modeling in trajectory prediction with a holistic approach.<n>Our method, grounded in information theory, provides a theoretically principled way to measure uncertainty.<n>Unlike prior work, our approach is compatible with state-of-the-art motion predictors, allowing for broader applicability.
arXiv Detail & Related papers (2024-10-02T15:02:32Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
Supervised masking approaches in the time-frequency domain aim to employ deep neural networks to estimate a multiplicative mask to extract clean speech.
This leads to a single estimate for each input without any guarantees or measures of reliability.
We study the benefits of modeling uncertainty in clean speech estimation.
arXiv Detail & Related papers (2023-05-15T15:55:12Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Creating Probabilistic Forecasts from Arbitrary Deterministic Forecasts
using Conditional Invertible Neural Networks [0.19573380763700712]
We use a conditional Invertible Neural Network (cINN) to learn the underlying distribution of the data and then combine the uncertainty from this distribution with an arbitrary deterministic forecast.
Our approach enables the simple creation of probabilistic forecasts without complicated statistical loss functions or further assumptions.
arXiv Detail & Related papers (2023-02-03T15:11:39Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Uncertainty-aware Human Motion Prediction [0.4568777157687961]
We propose an uncertainty-aware framework for human motion prediction (UA-HMP)
We first design an uncertainty-aware predictor through Gaussian modeling to achieve the value and the uncertainty of predicted motion.
Then, an uncertainty-guided learning scheme is proposed to quantitate the uncertainty and reduce the negative effect of the noisy samples.
arXiv Detail & Related papers (2021-07-08T03:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.