Stochasticity in Motion: An Information-Theoretic Approach to Trajectory Prediction
- URL: http://arxiv.org/abs/2410.01628v3
- Date: Fri, 28 Feb 2025 16:28:50 GMT
- Title: Stochasticity in Motion: An Information-Theoretic Approach to Trajectory Prediction
- Authors: Aron Distelzweig, Andreas Look, Eitan Kosman, Faris Janjoš, Jörg Wagner, Abhinav Valada,
- Abstract summary: This paper addresses the challenge of uncertainty modeling in trajectory prediction with a holistic approach.<n>Our method, grounded in information theory, provides a theoretically principled way to measure uncertainty.<n>Unlike prior work, our approach is compatible with state-of-the-art motion predictors, allowing for broader applicability.
- Score: 9.365269316773219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, accurate motion prediction is crucial for safe and efficient motion planning. To ensure safety, planners require reliable uncertainty estimates of the predicted behavior of surrounding agents, yet this aspect has received limited attention. In particular, decomposing uncertainty into its aleatoric and epistemic components is essential for distinguishing between inherent environmental randomness and model uncertainty, thereby enabling more robust and informed decision-making. This paper addresses the challenge of uncertainty modeling in trajectory prediction with a holistic approach that emphasizes uncertainty quantification, decomposition, and the impact of model composition. Our method, grounded in information theory, provides a theoretically principled way to measure uncertainty and decompose it into aleatoric and epistemic components. Unlike prior work, our approach is compatible with state-of-the-art motion predictors, allowing for broader applicability. We demonstrate its utility by conducting extensive experiments on the nuScenes dataset, which shows how different architectures and configurations influence uncertainty quantification and model robustness.
Related papers
- Low-Order Flow Reconstruction and Uncertainty Quantification in Disturbed Aerodynamics Using Sparse Pressure Measurements [0.0]
This paper presents a novel machine-learning framework for reconstructing low-order gustencounter flow field and lift coefficients from sparse, noisy surface pressure measurements.
Our study thoroughly investigates the time-varying response of sensors to gust-air interactions, uncovering valuable insights into optimal sensor placement.
arXiv Detail & Related papers (2025-01-06T22:02:06Z) - Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
We propose a new uncertainty-aware stereo matching framework.
We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution.
We introduce a theoretically grounded measure to overcome these limitations.
We find that our introduced measure behaves more reasonably in controlled synthetic tasks.
arXiv Detail & Related papers (2023-11-14T16:55:12Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Quantifying Deep Learning Model Uncertainty in Conformal Prediction [1.4685355149711297]
Conformal Prediction is a promising framework for representing the model uncertainty.
In this paper, we explore state-of-the-art CP methodologies and their theoretical foundations.
arXiv Detail & Related papers (2023-06-01T16:37:50Z) - System Theoretic View on Uncertainties [0.0]
We propose a system theoretic approach to handle performance limitations.
We derive a taxonomy based on uncertainty, i.e. lack of knowledge, as a root cause.
arXiv Detail & Related papers (2023-03-07T16:51:24Z) - Failure Detection for Motion Prediction of Autonomous Driving: An
Uncertainty Perspective [12.17821905210185]
Motion prediction is essential for safe and efficient autonomous driving.
Inexplicability and uncertainty of complex artificial intelligence models may lead to unpredictable failures.
We propose a framework of failure detection for motion prediction from the uncertainty perspective.
arXiv Detail & Related papers (2023-01-11T12:01:08Z) - How Does Traffic Environment Quantitatively Affect the Autonomous
Driving Prediction? [10.28126737850673]
This study proposes a trajectory prediction framework that outputs high uncertainty when confronting unforeseeable or unknown scenarios.
The proposed framework is used to analyze the environmental effect on the prediction algorithm performance.
arXiv Detail & Related papers (2023-01-11T11:47:54Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
Uncertainty is an essential consideration for time series forecasting tasks.
In this work, we focus on quantifying the uncertainty of traffic forecasting.
We develop Deep S-Temporal Uncertainty Quantification (STUQ), which can estimate both aleatoric and relational uncertainty.
arXiv Detail & Related papers (2022-08-11T15:21:53Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - STUaNet: Understanding uncertainty in spatiotemporal collective human
mobility [11.436035608461966]
We propose an uncertainty learning mechanism to simultaneously estimate internal data quality and external uncertainty regarding various contextual interactions.
We show that our proposed model is superior in terms of both forecasting and uncertainty quantification.
arXiv Detail & Related papers (2021-02-09T01:43:27Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.