論文の概要: Spatial-Temporal Transformer with Curriculum Learning for EEG-Based Emotion Recognition
- arxiv url: http://arxiv.org/abs/2507.14698v2
- Date: Tue, 19 Aug 2025 15:24:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 19:50:20.21513
- Title: Spatial-Temporal Transformer with Curriculum Learning for EEG-Based Emotion Recognition
- Title(参考訳): 脳波を用いた感情認識のためのカリキュラム学習型空間時間変換器
- Authors: Xuetao Lin, Tianhao Peng, Peihong Dai, Yu Liang, Wenjun Wu,
- Abstract要約: SST-CLは、空間時間変換器とカリキュラム学習を統合した新しいフレームワークである。
力に敏感なカリキュラム学習戦略は、高強度から低強度の感情状態へのトレーニングを指導する。
3つのベンチマークデータセットの実験では、様々な感情的強度レベルにわたる最先端のパフォーマンスが示されている。
- 参考スコア(独自算出の注目度): 2.847161275680418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: EEG-based emotion recognition plays an important role in developing adaptive brain-computer communication systems, yet faces two fundamental challenges in practical implementations: (1) effective integration of non-stationary spatial-temporal neural patterns, (2) robust adaptation to dynamic emotional intensity variations in real-world scenarios. This paper proposes SST-CL, a novel framework integrating spatial-temporal transformers with curriculum learning. Our method introduces two core components: a spatial encoder that models inter-channel relationships and a temporal encoder that captures multi-scale dependencies through windowed attention mechanisms, enabling simultaneous extraction of spatial correlations and temporal dynamics from EEG signals. Complementing this architecture, an intensity-aware curriculum learning strategy progressively guides training from high-intensity to low-intensity emotional states through dynamic sample scheduling based on a dual difficulty assessment. Comprehensive experiments on three benchmark datasets demonstrate state-of-the-art performance across various emotional intensity levels, with ablation studies confirming the necessity of both architectural components and the curriculum learning mechanism.
- Abstract(参考訳): 脳波に基づく感情認識は、適応型脳-コンピュータ通信システムの開発において重要な役割を担っているが、実践的実装において2つの根本的な課題に直面している。
本稿では,空間時間変換器とカリキュラム学習を統合した新しいフレームワークであるSST-CLを提案する。
提案手法では,チャネル間関係をモデル化する空間エンコーダと,窓面の注意機構を通じてマルチスケールの依存関係をキャプチャする時間エンコーダの2つを導入し,脳波信号から空間相関と時間ダイナミクスを同時抽出する。
このアーキテクチャを補完し、二重困難評価に基づく動的サンプルスケジューリングを通じて、高強度から低強度の感情状態へのトレーニングを段階的に指導する。
3つのベンチマークデータセットに関する総合的な実験は、様々な感情的強度レベルにわたる最先端のパフォーマンスを実証し、アブレーション研究は、アーキテクチャコンポーネントとカリキュラム学習機構の両方の必要性を確認した。
関連論文リスト
- Decomposing the Entropy-Performance Exchange: The Missing Keys to Unlocking Effective Reinforcement Learning [106.68304931854038]
検証可能な報酬付き強化学習(RLVR)は、大規模言語モデル(LLM)の推論能力を高めるために広く用いられている。
我々は,RLVRのエントロピー・パフォーマンス交換機構を,異なるレベルの粒度で系統的に解析する。
分析の結果, 上昇段階において, 負のサンプルのエントロピー減少は効果的な推論パターンの学習を促進することが明らかとなった。
プラトー段階では、学習効率は、低エントロピーのサンプルに存在する高エントロピートークンと、シーケンスの終端に位置するトークンと強く相関する。
論文 参考訳(メタデータ) (2025-08-04T10:08:10Z) - Confidence-driven Gradient Modulation for Multimodal Human Activity Recognition: A Dynamic Contrastive Dual-Path Learning Approach [3.0868241505670198]
動的コントラストデュアルパスネットワーク(D-HAR)と呼ばれる新しいフレームワークを提案する。
まず、デュアルパスの特徴抽出アーキテクチャを使用し、ResNetとDenseCDPNetが協調してマルチモーダルセンサデータを処理している。
第二に、局所的な知覚から意味的抽象への進歩的なアライメントを実現するために、多段階のコントラスト学習機構を導入する。
第3に、バックプロパゲーション中の各モード分岐の学習強度を動的に監視・調整する信頼性駆動型勾配変調方式を提案する。
論文 参考訳(メタデータ) (2025-07-03T17:37:46Z) - Zero-Shot EEG-to-Gait Decoding via Phase-Aware Representation Learning [9.49131859415923]
ドメイン一般化型脳波-モーションデコーディングフレームワークであるNeuroDyGaitを提案する。
構造化されたコントラスト表現学習とリレーショナルドメインモデリングを使用して、脳波とモーション埋め込みのセマンティックアライメントを実現する。
ベンチマークデータセットのクロスオブジェクト歩行復号における適応や優れた性能を必要とせずに、見えない個人に対するゼロショットモーション予測を実現する。
論文 参考訳(メタデータ) (2025-06-24T06:03:49Z) - CRIA: A Cross-View Interaction and Instance-Adapted Pre-training Framework for Generalizable EEG Representations [52.251569042852815]
CRIAは、可変長および可変チャネルコーディングを使用して、異なるデータセット間でEEGデータの統一表現を実現する適応フレームワークである。
このモデルでは、時間的、スペクトル的、空間的特徴を効果的に融合させるクロスアテンション機構を採用している。
テンプル大学脳波コーパスとCHB-MITデータセットによる実験結果から、CRIAは既存の方法よりも、同じ事前学習条件で優れていることが示された。
論文 参考訳(メタデータ) (2025-06-19T06:31:08Z) - SITE: towards Spatial Intelligence Thorough Evaluation [121.1493852562597]
空間知能 (Spatial Intelligence, SI) は、空間的関係の可視化、操作、推論を含む認知能力を表す。
SI Thorough Evaluationに向けたベンチマークデータセットであるSITEを紹介する。
ベンチマークの計算には、31の既存のデータセットに関するボトムアップ調査と、認知科学の3つの分類システムに基づくトップダウン戦略を組み合わせる。
論文 参考訳(メタデータ) (2025-05-08T17:45:44Z) - Technical Approach for the EMI Challenge in the 8th Affective Behavior Analysis in-the-Wild Competition [10.741278852581646]
Emotional Mimicry Intensity (EMI)の推定は、人間の社会的行動を理解し、人間とコンピュータの相互作用を促進する上で重要な役割を担っている。
本稿では,既存手法の限界に対処する2段階のクロスモーダルアライメントフレームワークを提案する。
Hume-Vidmimic2データセットの実験では、6つの感情次元の平均ピアソン係数相関が0.51であるのに対し、優れた性能を示した。
論文 参考訳(メタデータ) (2025-03-13T17:46:16Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
我々は、クロスオブジェクト感情認識のための訓練済みモデルに基づくMultimodal Mood Readerを開発した。
このモデルは、大規模データセットの事前学習を通じて、脳波信号の普遍的な潜在表現を学習する。
公開データセットに関する大規模な実験は、クロスオブジェクト感情認識タスクにおけるMood Readerの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T14:31:11Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
単段階の感情認識手法として,DSCT(Decoupled Subject-Context Transformer)を用いる。
広範に使われている文脈認識型感情認識データセットであるCAER-SとEMOTICの単段階フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-26T07:30:32Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
我々は,クロスコーパス脳波に基づく感情認識に対処するために,特徴アライメントを用いた新しいコントラスト学習フレームワークを提案する。
事前学習段階では、脳波信号の一般化可能な時間周波数表現を特徴付けるために、共同領域コントラスト学習戦略を導入する。
微調整の段階では、JCFAは脳電極間の構造的接続を考慮した下流タスクと共に洗練される。
論文 参考訳(メタデータ) (2024-04-15T08:21:17Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
本稿では,声帯からの感情認識のための連鎖回帰モデルに基づく階層的枠組みを提案する。
データスパシティの課題に対処するため、レイヤワイドおよび時間アグリゲーションモジュールを備えた自己教師付き学習(SSL)表現も使用しています。
提案されたシステムは、ACII Affective Vocal Burst (A-VB) Challenge 2022に参加し、「TWO」および「CULTURE」タスクで第1位となった。
論文 参考訳(メタデータ) (2023-03-14T16:08:45Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Cross-individual Recognition of Emotions by a Dynamic Entropy based on
Pattern Learning with EEG features [2.863100352151122]
複数の個体の神経生理学的特徴に関連する情報的指標を抽象化するために,動的エントロピーに基づくパターン学習(DEPL)として表されるディープラーニングフレームワークを提案する。
DEPLは、ダイナミックエントロピーに基づく特徴の皮質位置間の相互依存性をモデル化することにより、ディープ畳み込みニューラルネットワークによって生成された表現の能力を向上した。
論文 参考訳(メタデータ) (2020-09-26T07:22:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。