論文の概要: Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards
- arxiv url: http://arxiv.org/abs/2507.14783v2
- Date: Thu, 24 Jul 2025 16:25:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 13:02:36.839479
- Title: Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards
- Title(参考訳): Omni-Thinker: ハイブリッドリワード付きマルチタスクRLによるLCMにおけるクロスドメイン一般化のスケーリング
- Authors: Derek Li, Jiaming Zhou, Amirreza Kazemi, Qianyi Sun, Abbas Ghaddar, Mohammad Ali Alomrani, Liheng Ma, Yu Luo, Dong Li, Feng Wen, Jianye Hao, Mark Coates, Yingxue Zhang,
- Abstract要約: Omni-Thinkerは多種多様なタスクにわたる大規模言語モデル(LLM)の性能を向上させる統合強化学習フレームワークである。
我々の手法はタスクタイプを一貫した最適化を可能にし、RLベースのトレーニングを主観的ドメインに拡張する。
4つの領域にまたがる実験の結果、カリキュラムの学習は、ジョイントトレーニングよりも5.2%、モデルマージより9.1%向上していることがわかった。
- 参考スコア(独自算出の注目度): 50.21528417884747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of general-purpose artificial intelligence relies on large language models (LLMs) that excel across a wide range of tasks, from structured reasoning to creative generation. However, post-training methods like Supervised Fine-Tuning (SFT) often struggle with generalization, favoring memorization over transferable learning. In this work, we introduce Omni-Thinker, a unified reinforcement learning (RL) framework that enhances LLM performance across diverse tasks by combining rule-based verifiable rewards with generative preference signals via LLM-as-a-Judge evaluations. Our approach enables consistent optimization across task types and scales RL-based training to subjective domains. We further investigate training strategies, demonstrating that a curriculum-based progression that orders tasks from structured to open-ended improves performance and reduces forgetting. Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging. These results highlight the importance of task-aware sampling and hybrid supervision in scaling RL-based post-training for general-purpose LLMs.
- Abstract(参考訳): 汎用人工知能の進歩は、構造化推論から創造的生成に至るまで、幅広いタスクにまたがる大きな言語モデル(LLM)に依存している。
しかし、SFT(Supervised Fine-Tuning)のようなポストトレーニング手法はしばしば一般化に苦慮し、伝達可能な学習よりも記憶を優先する。
本研究では,ルールベースの検証可能な報酬とLLM-as-a-Judge評価による生成的嗜好信号を組み合わせることで,多種多様なタスクにおけるLLM性能を向上させる統合強化学習(RL)フレームワークであるOmni-Thinkerを紹介する。
提案手法は,タスクタイプ間の一貫した最適化を可能にし,RLベースのトレーニングを主観的ドメインに拡張する。
さらに、構造化されたタスクからオープンエンドまでのタスクを注文するカリキュラムベースの進行が、パフォーマンスを改善し、忘れを減らし、トレーニング戦略を考察する。
4つの領域にまたがる実験の結果、カリキュラムの学習は、ジョイントトレーニングよりも5.2%、モデルマージより9.1%向上していることがわかった。
これらの結果は,汎用LLMのためのRLベースのポストトレーニングのスケーリングにおいて,タスク対応サンプリングとハイブリッド監視の重要性を強調した。
関連論文リスト
- Small LLMs Do Not Learn a Generalizable Theory of Mind via Reinforcement Learning [1.6114012813668932]
小言語モデル(LLM)は、精神の理論(ToM)能力の開発に苦慮している。
長いRLトレーニングは、トレーニングデータセットの統計パターンをハッキングするモデルにつながる。
これは学習された振る舞いが、真の抽象的なToM能力の獲得ではなく、狭いオーバーフィッティングの形式であることを示唆している。
論文 参考訳(メタデータ) (2025-07-21T16:47:59Z) - RLAE: Reinforcement Learning-Assisted Ensemble for LLMs [21.77261258691006]
大規模言語モデル(LLM)は、様々なモデルの多様な強みを効果的に組み合わせ、様々なタスクのパフォーマンスを高めるための有望なアプローチを提供する。
マルコフ決定プロセス(MDP)のレンズを通してアンサンブルを再構成する新しいフレームワークであるLLMのための強化学習支援アンサンブルを提案する。
提案手法では,入力コンテキストと中間生成状態の両方を考慮してアンサンブル重みを動的に調整するRLエージェントを提案する。
論文 参考訳(メタデータ) (2025-05-31T07:38:41Z) - Estimating the Effects of Sample Training Orders for Large Language Models without Retraining [49.59675538160363]
大規模言語モデル(LLM)において,サンプルの訓練順序が重要な役割を担っている
従来の手法では、様々なサンプル順序でモデルを再訓練する必要がある。
リトレーニングフリーのフレームワークを設計することで従来の手法を改善します。
論文 参考訳(メタデータ) (2025-05-28T07:07:02Z) - DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training [19.701565022644605]
本稿では,分布レベルの学習可能性の概念に基づくカリキュラム学習フレームワークを提案する。
我々のフレームワークは、高い平均的優位性(探索)または低いサンプル数(探索)で分布を優先順位付けする。
実験の結果,本フレームワークは収束速度と最終性能を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2025-04-13T20:10:27Z) - SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
大規模言語モデル(LLM)エージェントは、実世界のタスクでマルチターンインタラクションを実行する必要がある。
LLMエージェントを最適化するための既存のマルチターンRLアルゴリズムは、LLMの一般化能力を活用しながら、複数回にわたって効果的なクレジット割り当てを行うことができない。
本稿では,新たなRLアルゴリズムであるSWEET-RLを提案する。
我々の実験は、SWEET-RLがコルベンチにおける成功率と勝利率を、他の最先端マルチターンRLアルゴリズムと比較して6%向上することを示した。
論文 参考訳(メタデータ) (2025-03-19T17:55:08Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - Routing to the Expert: Efficient Reward-guided Ensemble of Large
Language Models [69.51130760097818]
本研究では,報奨誘導型ルーティング手法であるZooterを提案する。
さまざまなドメインやタスクについて26のサブセットを持つ総合的なベンチマークコレクション上でZooterを評価する。
論文 参考訳(メタデータ) (2023-11-15T04:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。