Light Future: Multimodal Action Frame Prediction via InstructPix2Pix
- URL: http://arxiv.org/abs/2507.14809v1
- Date: Sun, 20 Jul 2025 03:57:18 GMT
- Title: Light Future: Multimodal Action Frame Prediction via InstructPix2Pix
- Authors: Zesen Zhong, Duomin Zhang, Yijia Li,
- Abstract summary: This paper proposes a novel, efficient, and lightweight approach for robot action prediction.<n>It offers significantly reduced computational cost and inference latency compared to conventional video prediction models.<n>It pioneers the adaptation of the InstructPix2Pix model for forecasting future visual frames in robotic tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting future motion trajectories is a critical capability across domains such as robotics, autonomous systems, and human activity forecasting, enabling safer and more intelligent decision-making. This paper proposes a novel, efficient, and lightweight approach for robot action prediction, offering significantly reduced computational cost and inference latency compared to conventional video prediction models. Importantly, it pioneers the adaptation of the InstructPix2Pix model for forecasting future visual frames in robotic tasks, extending its utility beyond static image editing. We implement a deep learning-based visual prediction framework that forecasts what a robot will observe 100 frames (10 seconds) into the future, given a current image and a textual instruction. We repurpose and fine-tune the InstructPix2Pix model to accept both visual and textual inputs, enabling multimodal future frame prediction. Experiments on the RoboTWin dataset (generated based on real-world scenarios) demonstrate that our method achieves superior SSIM and PSNR compared to state-of-the-art baselines in robot action prediction tasks. Unlike conventional video prediction models that require multiple input frames, heavy computation, and slow inference latency, our approach only needs a single image and a text prompt as input. This lightweight design enables faster inference, reduced GPU demands, and flexible multimodal control, particularly valuable for applications like robotics and sports motion trajectory analytics, where motion trajectory precision is prioritized over visual fidelity.
Related papers
- E-Motion: Future Motion Simulation via Event Sequence Diffusion [86.80533612211502]
Event-based sensors may potentially offer a unique opportunity to predict future motion with a level of detail and precision previously unachievable.
We propose to integrate the strong learning capacity of the video diffusion model with the rich motion information of an event camera as a motion simulation framework.
Our findings suggest a promising direction for future research in enhancing the interpretative power and predictive accuracy of computer vision systems.
arXiv Detail & Related papers (2024-10-11T09:19:23Z) - Visual Representation Learning with Stochastic Frame Prediction [90.99577838303297]
This paper revisits the idea of video generation that learns to capture uncertainty in frame prediction.
We design a framework that trains a frame prediction model to learn temporal information between frames.
We find this architecture allows for combining both objectives in a synergistic and compute-efficient manner.
arXiv Detail & Related papers (2024-06-11T16:05:15Z) - Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
We explore the task of generating future sensor observations conditioned on the past.
We leverage the large-scale pretraining of image diffusion models which can handle multi-modality.
We create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes.
arXiv Detail & Related papers (2024-04-17T16:56:31Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Video Prediction at Multiple Scales with Hierarchical Recurrent Networks [24.536256844130996]
We propose a novel video prediction model able to forecast future possible outcomes of different levels of granularity simultaneously.
By combining spatial and temporal downsampling, MSPred is able to efficiently predict abstract representations over long time horizons.
In our experiments, we demonstrate that our proposed model accurately predicts future video frames as well as other representations on various scenarios.
arXiv Detail & Related papers (2022-03-17T13:08:28Z) - A Framework for Multisensory Foresight for Embodied Agents [11.351546861334292]
Predicting future sensory states is crucial for learning agents such as robots, drones, and autonomous vehicles.
In this paper, we couple multiple sensory modalities with exploratory actions and propose a predictive neural network architecture to address this problem.
The framework was tested and validated with a dataset containing 4 sensory modalities (vision, haptic, audio, and tactile) on a humanoid robot performing 9 behaviors multiple times on a large set of objects.
arXiv Detail & Related papers (2021-09-15T20:20:04Z) - Future Frame Prediction for Robot-assisted Surgery [57.18185972461453]
We propose a ternary prior guided variational autoencoder (TPG-VAE) model for future frame prediction in robotic surgical video sequences.
Besides content distribution, our model learns motion distribution, which is novel to handle the small movements of surgical tools.
arXiv Detail & Related papers (2021-03-18T15:12:06Z) - Future Frame Prediction of a Video Sequence [5.660207256468971]
The ability to predict, anticipate and reason about future events is the essence of intelligence.
The ability to predict, anticipate and reason about future events is the essence of intelligence.
arXiv Detail & Related papers (2020-08-31T15:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.