論文の概要: Tiny language models
- arxiv url: http://arxiv.org/abs/2507.14871v1
- Date: Sun, 20 Jul 2025 08:49:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.099101
- Title: Tiny language models
- Title(参考訳): 丁寧な言語モデル
- Authors: Ronit D. Gross, Yarden Tzach, Tal Halevi, Ella Koresh, Ido Kanter,
- Abstract要約: 我々は,小言語モデル (TLM) が,事前学習されたモデルと事前学習されていないモデルの間に,分類タスク間で明らかな性能差を示すことを示した。
本研究の結果は,Wikipediaデータセットのサブセット上で,BERT-6とBERT-1の変種を事前学習することに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A prominent achievement of natural language processing (NLP) is its ability to understand and generate meaningful human language. This capability relies on complex feedforward transformer block architectures pre-trained on large language models (LLMs). However, LLM pre-training is currently feasible only for a few dominant companies due to the immense computational resources required, limiting broader research participation. This creates a critical need for more accessible alternatives. In this study, we explore whether tiny language models (TLMs) exhibit the same key qualitative features of LLMs. We demonstrate that TLMs exhibit a clear performance gap between pre-trained and non-pre-trained models across classification tasks, indicating the effectiveness of pre-training, even at a tiny scale. The performance gap increases with the size of the pre-training dataset and with greater overlap between tokens in the pre-training and classification datasets. Furthermore, the classification accuracy achieved by a pre-trained deep TLM architecture can be replicated through a soft committee of multiple, independently pre-trained shallow architectures, enabling low-latency TLMs without affecting classification accuracy. Our results are based on pre-training BERT-6 and variants of BERT-1 on subsets of the Wikipedia dataset and evaluating their performance on FewRel, AGNews, and DBPedia classification tasks. Future research on TLM is expected to further illuminate the mechanisms underlying NLP, especially given that its biologically inspired models suggest that TLMs may be sufficient for children or adolescents to develop language.
- Abstract(参考訳): 自然言語処理(NLP)の顕著な成果は、意味のある人間の言語を理解し、生成する能力である。
この機能は、大規模言語モデル(LLM)で事前訓練された複雑なフィードフォワードトランスフォーマーブロックアーキテクチャに依存している。
しかし、LLM事前学習は、大規模な計算資源が必要であり、研究への参加が制限されるため、いくつかの有力企業でしか実現できない。
これにより、よりアクセスしやすい代替手段が求められます。
本研究では,小言語モデル(TLM)がLLMの鍵となる定性的特徴を示すかどうかを考察する。
本研究では, 事前学習モデルと非事前学習モデルの間には, 学習前モデルと非事前学習モデルの間に明らかな性能差があることを示し, たとえ小規模な規模であっても, 事前学習の有効性を示す。
パフォーマンスギャップは、事前トレーニングデータセットのサイズと、事前トレーニングデータセットと分類データセットのトークン間の重なり合いによって増加する。
さらに、事前訓練された深部TLMアーキテクチャによって達成された分類精度は、複数の独立に訓練された浅部アーキテクチャからなる軟部委員会を通じて再現することができ、分類精度に影響を与えることなく低遅延TLMを可能にする。
本研究は,Wikipediaデータセットのサブセット上でBERT-6とBERT-1の変種を事前学習し,FewRel,AGNews,DBPediaの分類タスク上での性能を評価する。
TLMの今後の研究は、特に生物学的にインスパイアされたモデルが、子供や青年に言語を発達させるのに十分である可能性を示唆していることを考えると、NLPの基盤となるメカニズムをさらに明らかにすることが期待されている。
関連論文リスト
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
大規模言語モデル(LLM)は、プログラミング言語の構文、意味論、使用パターンを学ぶために、大規模で多様なデータセットに依存している。
低リソース言語では、そのようなデータの限られた可用性は、モデルを効果的に一般化する能力を損なう。
本稿では,低リソース言語におけるLLMの性能向上のためのいくつかの手法の有効性を実証研究する。
論文 参考訳(メタデータ) (2025-01-31T12:23:28Z) - TinyHelen's First Curriculum: Training and Evaluating Tiny Language Models in a Simpler Language Environment [30.93798042712827]
トレーニング言語モデル(LM)とそのアプリケーションエージェントは、大規模なデータセットとモデルのために、ますますコストがかかる。
ノイズを排除し、語彙を最小化し、ジャンル固有のパターンを維持することで、テキストデータを洗練するためのパイプラインを提案する。
実験により,ランダー事前学習がLM学習効率を向上させることが示された。
論文 参考訳(メタデータ) (2024-12-31T16:08:15Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
大規模言語モデルを新しい言語に適応させるには、通常、継続事前訓練(CT)と、教師付き微調整(SFT)が含まれる。
我々は低リソース言語の代替としてモデルマージを提案し、異なる機能を持つモデルを追加トレーニングなしで単一のモデルに組み合わせる。
Llama-2-7Bをベースとした実験により、モデルマージはタスク解決能力の低い低リソース言語に対して、極めて少ないデータを持つシナリオにおいて、CT-then-SFTよりも優れていることが実証された。
論文 参考訳(メタデータ) (2024-07-04T15:14:17Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
我々は、より小さな言語モデルの訓練を支援するために、大規模言語モデルの強力な生成力を利用する新しい手法、GenCoを導入する。
本手法では,LLMは2つの重要な方法で,より小さなモデルの自己学習ループにおいて重要な役割を果たす。
予測ラベルに条件付き入力テキストを書き換えることで、高品質なトレーニングペアの開発を支援する。
論文 参考訳(メタデータ) (2023-04-24T07:35:38Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Differentially Private Decoding in Large Language Models [14.221692239892207]
本稿では,復号段階で既に訓練済みのモデルに適用可能な,単純で分かり易く,計算的に軽量な摂動機構を提案する。
我々の摂動メカニズムはモデルに依存しず、どんな大規模言語モデルとも併用することができる。
論文 参考訳(メタデータ) (2022-05-26T20:50:58Z) - NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient
Framework [10.656788279434798]
本稿では,大規模事前学習に依存しない,シンプルで効率的な学習フレームワーク TLM を提案する。
4つの領域の8つの分類データセットにおいて、TLMは事前訓練された言語モデルよりも良い結果が得られる。
論文 参考訳(メタデータ) (2021-11-07T17:13:59Z) - On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets [74.11825654535895]
大規模未ラベルテキストデータ上での事前学習言語モデル(LM)により、ダウンストリームのパフォーマンスが極めて容易になる。
我々は,事前学習データに含まれる特定の特徴について,セマンティクス以外では,下流タスクのスクラッチからトレーニングしたデータよりも,事前学習したLMを優れているか検討した。
論文 参考訳(メタデータ) (2021-09-08T10:39:57Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
マスク言語モデル(MLM)トレーニングの印象的なパフォーマンスの可能な説明は、そのようなモデルがNLPパイプラインで広く普及している構文構造を表現することを学びました。
本稿では,先行訓練がダウンストリームタスクでほぼ完全に成功する理由として,高次単語共起統計をモデル化できることを挙げる。
以上の結果から,純粋分布情報は,事前学習の成功を主に説明し,深い言語知識を必要とする難易度評価データセットのキュレーションの重要性を強調する。
論文 参考訳(メタデータ) (2021-04-14T06:30:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。