Application-Specific Component-Aware Structured Pruning of Deep Neural Networks via Soft Coefficient Optimization
- URL: http://arxiv.org/abs/2507.14882v1
- Date: Sun, 20 Jul 2025 09:50:04 GMT
- Title: Application-Specific Component-Aware Structured Pruning of Deep Neural Networks via Soft Coefficient Optimization
- Authors: Ganesh Sundaram, Jonas Ulmen, Amjad Haider, Daniel Görges,
- Abstract summary: It remains critical to ensure that application-specific performance characteristics are preserved during compression.<n>In structured pruning, where groups of structurally coherent elements are removed, conventional importance metrics frequently fail to maintain these essential performance attributes.<n>We propose an enhanced importance metric framework that not only reduces model size but also explicitly accounts for application-specific performance constraints.
- Score: 1.6874375111244326
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks (DNNs) offer significant versatility and performance benefits, but their widespread adoption is often hindered by high model complexity and computational demands. Model compression techniques such as pruning have emerged as promising solutions to these challenges. However, it remains critical to ensure that application-specific performance characteristics are preserved during compression. In structured pruning, where groups of structurally coherent elements are removed, conventional importance metrics frequently fail to maintain these essential performance attributes. In this work, we propose an enhanced importance metric framework that not only reduces model size but also explicitly accounts for application-specific performance constraints. We employ multiple strategies to determine the optimal pruning magnitude for each group, ensuring a balance between compression and task performance. Our approach is evaluated on an autoencoder tasked with reconstructing MNIST images. Experimental results demonstrate that the proposed method effectively preserves task-relevant performance, maintaining the model's usability even after substantial pruning, by satisfying the required application-specific criteria.
Related papers
- InvFussion: Bridging Supervised and Zero-shot Diffusion for Inverse Problems [76.39776789410088]
This work introduces a framework that combines the strong performance of supervised approaches and the flexibility of zero-shot methods.<n>A novel architectural design seamlessly integrates the degradation operator directly into the denoiser.<n> Experimental results on the FFHQ and ImageNet datasets demonstrate state-of-the-art posterior-sampling performance.
arXiv Detail & Related papers (2025-04-02T12:40:57Z) - Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling [0.0]
Recurrent neural networks (RNNs) are central to sequence modeling tasks, yet their high computational complexity poses challenges for scalability and real-time deployment.<n>We introduce a novel framework that models RNNs as partially ordered sets (posets) and constructs corresponding dependency lattices.<n>By identifying meet irreducible neurons, our lattice-based pruning algorithm selectively retains critical connections while eliminating redundant ones.
arXiv Detail & Related papers (2025-02-23T10:11:38Z) - Optimizing Singular Spectrum for Large Language Model Compression [95.7621116637755]
We introduce SoCo, a novel compression framework that learns to rescale the decomposed components of SVD in a data-driven manner.<n>Thanks to the learnable singular spectrum, SoCo adaptively prunes components according to the sparsified importance scores.<n> Experimental evaluations across multiple LLMs and benchmarks demonstrate that SoCo surpasses the state-of-the-art methods in model compression.
arXiv Detail & Related papers (2025-02-20T23:18:39Z) - Less is KEN: a Universal and Simple Non-Parametric Pruning Algorithm for Large Language Models [1.5807079236265718]
KEN is a straightforward, universal and unstructured pruning algorithm based on Kernel Density Estimation (KDE)
Ken aims to construct optimized transformers by selectively preserving the most significant parameters while restoring others to their pre-training state.
Ken achieves equal or better performance than their original unpruned versions, with a minimum parameter reduction of 25%.
arXiv Detail & Related papers (2024-02-05T16:11:43Z) - Integrating Fairness and Model Pruning Through Bi-level Optimization [16.213634992886384]
We introduce a novel concept of fair model pruning, which involves developing a sparse model that adheres to fairness criteria.<n>In particular, we propose a framework to jointly optimize the pruning mask and weight update processes with fairness constraints.<n>This framework is engineered to compress models that maintain performance while ensuring fairness in a unified process.
arXiv Detail & Related papers (2023-12-15T20:08:53Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Towards Optimal Compression: Joint Pruning and Quantization [1.191194620421783]
This paper introduces FITCompress, a novel method integrating layer-wise mixed-precision quantization and unstructured pruning.
Experiments on computer vision and natural language processing benchmarks demonstrate that our proposed approach achieves a superior compression-performance trade-off.
arXiv Detail & Related papers (2023-02-15T12:02:30Z) - Attentive Fine-Grained Structured Sparsity for Image Restoration [63.35887911506264]
N:M structured pruning has appeared as one of the effective and practical pruning approaches for making the model efficient with the accuracy constraint.
We propose a novel pruning method that determines the pruning ratio for N:M structured sparsity at each layer.
arXiv Detail & Related papers (2022-04-26T12:44:55Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Neural Network Compression Via Sparse Optimization [23.184290795230897]
We propose a model compression framework based on the recent progress on sparse optimization.
We achieve up to 7.2 and 2.9 times FLOPs reduction with the same level of evaluation of accuracy on VGG16 for CIFAR10 and ResNet50 for ImageNet.
arXiv Detail & Related papers (2020-11-10T03:03:55Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.