論文の概要: Simulation-Prior Independent Neural Unfolding Procedure
- arxiv url: http://arxiv.org/abs/2507.15084v1
- Date: Sun, 20 Jul 2025 18:43:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.18807
- Title: Simulation-Prior Independent Neural Unfolding Procedure
- Title(参考訳): シミュレーション-プリア独立型ニューラルアンフォールディング法
- Authors: Anja Butter, Theo Heimel, Nathan Huetsch, Michael Kagan, Tilman Plehn,
- Abstract要約: 機械学習は、LHCで結合することなく高次元空間を展開できる。
新しいSPINUP法は、前方マッピングを符号化したニューラルネットワークに基づいて展開された分布を抽出する。
ニューラルネットワークの重要度サンプリングによって効率を向上し、前処理における情報損失の影響を推定するためにアンサンブルを用いることができる。
- 参考スコア(独自算出の注目度): 0.5872014229110214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning allows unfolding high-dimensional spaces without binning at the LHC. The new SPINUP method extracts the unfolded distribution based on a neural network encoding the forward mapping, making it independent of the prior from the simulated training data. It is made efficient through neural importance sampling, and ensembling can be used to estimate the effect of information loss in the forward process. We showcase SPINUP for unfolding detector effects on jet substructure observables and for unfolding to parton level of associated Higgs and single-top production.
- Abstract(参考訳): 機械学習は、LHCで結合することなく高次元空間を展開できる。
新しいSPINUP法は、フォワードマッピングを符号化したニューラルネットワークに基づいて展開された分布を抽出し、シミュレーションされたトレーニングデータから前と独立させる。
ニューラルネットワークの重要度サンプリングによって効率を向上し、前処理における情報損失の影響を推定するためにアンサンブルを用いることができる。
本稿では, ジェットサブ構造観測装置における検出器の展開効果と, 関連するヒッグス粒子のパルトンレベルへの展開, および単一トップ生成について紹介する。
関連論文リスト
- Deep learning with missing data [3.829599191332801]
本稿では,既存の計算手法と組み合わせて適用可能なパターン埋め込みニューラルネットワーク(PENN)を提案する。
インプットされたデータに基づいてトレーニングされたニューラルネットワークに加えて、PENNは観察指標のベクトルを第2のニューラルネットワークに渡して、コンパクトな表現を提供する。
出力は第3のニューラルネットワークに結合され、最終的な予測が生成される。
論文 参考訳(メタデータ) (2025-04-21T18:57:36Z) - On How Iterative Magnitude Pruning Discovers Local Receptive Fields in Fully Connected Neural Networks [92.66231524298554]
イテレーティブ・マグニチュード・プルーニング(IMP)は、高性能にトレーニングできるスパース・コンボリューションワークを抽出する一般的な方法となっている。
近年の研究では、IMPを完全連結ニューラルネットワーク(FCN)に適用することで、局所受容野(RF)の出現につながることが示されている。
非ガウス的統計量(例えばシャープエッジ)を用いた合成画像のトレーニングは、FCNにおける局所RFの出現を促進するのに十分であることを示す結果から着想を得て、IMPが非ガウス的統計量のFCN表現を反復的に増加させるという仮説を立てた。
論文 参考訳(メタデータ) (2024-12-09T14:56:23Z) - Out-of-Distribution Detection using Neural Activation Prior [15.673290330356194]
アウト・オブ・ディストリビューション検出(OOD)は、機械学習モデルを現実世界にデプロイする上で重要な技術である。
OOD検出のためのシンプルで効果的なニューラルアクティベーションプリミティブ(NAP)を提案する。
提案手法は,CIFARベンチマークとImageNetデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-28T08:45:07Z) - An unfolding method based on conditional Invertible Neural Networks
(cINN) using iterative training [0.0]
非可逆ニューラルネットワーク(INN)のような生成ネットワークは確率的展開を可能にする。
模擬トレーニングサンプルとデータ間のずれを調整した展開のための反復条件INN(IcINN)を導入する。
論文 参考訳(メタデータ) (2022-12-16T19:00:05Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Generalized multiscale feature extraction for remaining useful life
prediction of bearings with generative adversarial networks [4.988898367111902]
ベアリングは産業機械の重要な要素であり、その失敗は不必要なダウンタイムと経済損失につながる可能性がある。
軸受の残りの有効寿命(RUL)を予測する必要がある。
本稿では, 生成逆数ネットワークを用いた新しい一般化されたマルチスケール特徴抽出手法を提案する。
論文 参考訳(メタデータ) (2021-09-26T07:11:55Z) - Attaining entropy production and dissipation maps from Brownian movies
via neural networks [0.0]
エントロピー生成の定量化(EP)は、メソスコピックスケールのシステムを理解するために不可欠である。
本研究では,映画からのみ計算する教師なし学習アルゴリズムを用いてEPの推定手法を開発した。
本手法はEPを正確に測定し,2つの非平衡系における散逸マップを作成する。
論文 参考訳(メタデータ) (2021-06-29T05:45:13Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Forensicability of Deep Neural Network Inference Pipelines [68.8204255655161]
本研究では,観測可能な出力に特徴的な数値偏差をトレースすることで,機械学習パイプラインの実行環境の特性を推定する手法を提案する。
一連の概念実証実験の結果は、ディープニューラルネットワーク予測を生成するために使用されるハードウェアプラットフォームの識別など、法医学的な応用をもたらす。
論文 参考訳(メタデータ) (2021-02-01T15:41:49Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。