Automated planning with ontologies under coherence update semantics (Extended Version)
- URL: http://arxiv.org/abs/2507.15120v2
- Date: Wed, 23 Jul 2025 09:09:15 GMT
- Title: Automated planning with ontologies under coherence update semantics (Extended Version)
- Authors: Stefan Borgwardt, Duy Nhu, Gabriele Röger,
- Abstract summary: We present a new approach for planning with DL-Lite that combines the advantages of ontology-based action conditions.<n>We show the complexity of the resulting compilation is not higher than that of previous approaches.
- Score: 3.6253617038977226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Standard automated planning employs first-order formulas under closed-world semantics to achieve a goal with a given set of actions from an initial state. We follow a line of research that aims to incorporate background knowledge into automated planning problems, for example, by means of ontologies, which are usually interpreted under open-world semantics. We present a new approach for planning with DL-Lite ontologies that combines the advantages of ontology-based action conditions provided by explicit-input knowledge and action bases (eKABs) and ontology-aware action effects under the coherence update semantics. We show that the complexity of the resulting formalism is not higher than that of previous approaches and provide an implementation via a polynomial compilation into classical planning. An evaluation of existing and new benchmarks examines the performance of a planning system on different variants of our compilation.
Related papers
- Reinforced Reasoning for Embodied Planning [18.40186665383579]
Embodied planning requires agents to make coherent multi-step decisions based on dynamic visual observations and natural language goals.<n>We introduce a reinforcement fine-tuning framework that brings R1-style reasoning enhancement into embodied planning.
arXiv Detail & Related papers (2025-05-28T07:21:37Z) - Planning with OWL-DL Ontologies (Extended Version) [6.767885381740952]
We present a black-box that supports the full power expressive DL.
Our main algorithm relies on rewritings of the OWL-mediated planning specifications into PDDL.
We evaluate our implementation on benchmark sets from several domains.
arXiv Detail & Related papers (2024-08-14T13:27:02Z) - Parallel Strategies for Best-First Generalized Planning [51.713634067802104]
Generalized planning (GP) is a research area of AI that studies the automated synthesis of algorithmic-like solutions capable of solving multiple classical planning instances.
One of the current advancements has been the introduction of Best-First Generalized Planning (BFGP), a GP algorithm based on a novel solution space that can be explored with search.
This paper evaluates the application of parallel search techniques to BFGP, another critical component in closing the performance gap.
arXiv Detail & Related papers (2024-07-31T09:50:22Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Towards Ontology-Mediated Planning with OWL DL Ontologies (Extended
Version) [7.995360025953931]
We present a new approach in which the planning specification and ontology are kept separate, and are linked together using an interface.
This allows planning experts to work in a familiar formalism, while existing domains can be easily integrated and extended by experts.
The idea is to rewrite the whole-mediated planning problem into a classical planning problem to be processed by existing planning tools.
arXiv Detail & Related papers (2023-08-16T08:05:53Z) - A Categorical Representation Language and Computational System for
Knowledge-Based Planning [5.004278968175897]
We propose an alternative approach to representing and managing updates to world states during planning.
Based on the category-theoretic concepts of $mathsfC$-sets and double-pushout rewriting (DPO), our proposed representation can effectively handle structured knowledge about world states.
arXiv Detail & Related papers (2023-05-26T19:01:57Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
We consider alternatives to an implicit sequential planning assumption.
We propose Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS) for approximating the optimal plan.
We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds.
arXiv Detail & Related papers (2020-04-23T18:08:58Z) - STRIPS Action Discovery [67.73368413278631]
Recent approaches have shown the success of classical planning at synthesizing action models even when all intermediate states are missing.
We propose a new algorithm to unsupervisedly synthesize STRIPS action models with a classical planner when action signatures are unknown.
arXiv Detail & Related papers (2020-01-30T17:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.