Clinical Semantic Intelligence (CSI): Emulating the Cognitive Framework of the Expert Clinician for Comprehensive Oral Disease Diagnosis
- URL: http://arxiv.org/abs/2507.15140v1
- Date: Sun, 20 Jul 2025 22:30:01 GMT
- Title: Clinical Semantic Intelligence (CSI): Emulating the Cognitive Framework of the Expert Clinician for Comprehensive Oral Disease Diagnosis
- Authors: Mohammad Mashayekhi, Sara Ahmadi Majd, Arian AmirAmjadi, Parsa Hosseini,
- Abstract summary: We develop a novel artificial intelligence framework that diagnoses 118 different oral diseases.<n>Our core hypothesis is that moving beyond simple pattern matching to emulate expert reasoning is critical to building clinically useful diagnostic aids.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The diagnosis of oral diseases presents a problematic clinical challenge, characterized by a wide spectrum of pathologies with overlapping symptomatology. To address this, we developed Clinical Semantic Intelligence (CSI), a novel artificial intelligence framework that diagnoses 118 different oral diseases by computationally modeling the cognitive processes of an expert clinician. Our core hypothesis is that moving beyond simple pattern matching to emulate expert reasoning is critical to building clinically useful diagnostic aids. CSI's architecture integrates a fine-tuned multimodal CLIP model with a specialized ChatGLM-6B language model. This system executes a Hierarchical Diagnostic Reasoning Tree (HDRT), a structured framework that distills the systematic, multi-step logic of differential diagnosis. The framework operates in two modes: a Fast Mode for rapid screening and a Standard Mode that leverages the full HDRT for an interactive and in-depth diagnostic workup. To train and validate our system, we curated a primary dataset of 4,310 images, supplemented by an external hold-out set of 176 images for final validation. A clinically-informed augmentation strategy expanded our training data to over 30,000 image-text pairs. On a 431-image internal test set, CSI's Fast Mode achieved an accuracy of 73.4%, which increased to 89.5% with the HDRT-driven Standard Mode. The performance gain is directly attributable to the hierarchical reasoning process. Herein, we detail the architectural philosophy, development, and rigorous evaluation of the CSI framework.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Integrating clinical reasoning into large language model-based diagnosis through etiology-aware attention steering [7.092919468004549]
Large Language Models (LLMs) demonstrate significant capabilities in medical text understanding and generation.<n>This study aims to enhance LLMs' diagnostic accuracy and clinical reasoning ability.
arXiv Detail & Related papers (2025-08-01T03:05:43Z) - Sequential Diagnosis with Language Models [21.22416732642907]
We introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging cases into stepwise diagnostic encounters.<n>Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed.<n>We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians.
arXiv Detail & Related papers (2025-06-27T17:27:26Z) - An Agentic System for Rare Disease Diagnosis with Traceable Reasoning [58.78045864541539]
We introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM)<n>DeepRare generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning.<n>The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases.
arXiv Detail & Related papers (2025-06-25T13:42:26Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models [25.13622249539088]
DiagnosisArena is a benchmark designed to rigorously assess professional-level diagnostic competence.<n> DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties.<n>Our study reveals that even the most advanced reasoning models, o3, o1, and DeepSeek-R1, achieve only 51.12%, 31.09%, and 17.79% accuracy, respectively.
arXiv Detail & Related papers (2025-05-20T09:14:53Z) - Large-scale Long-tailed Disease Diagnosis on Radiology Images [51.453990034460304]
RadDiag is a foundational model supporting 2D and 3D inputs across various modalities and anatomies.
Our dataset, RP3D-DiagDS, contains 40,936 cases with 195,010 scans covering 5,568 disorders.
arXiv Detail & Related papers (2023-12-26T18:20:48Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.