論文の概要: Cross-Domain Few-Shot Learning with Coalescent Projections and Latent Space Reservation
- arxiv url: http://arxiv.org/abs/2507.15243v1
- Date: Mon, 21 Jul 2025 05:01:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.26067
- Title: Cross-Domain Few-Shot Learning with Coalescent Projections and Latent Space Reservation
- Title(参考訳): Coalescent Projections と Latent Space Reservation を用いたクロスドメインFew-Shotラーニング
- Authors: Naeem Paeedeh, Mahardhika Pratama, Wolfgang Mayer, Jimmy Cao, Ryszard Kowlczyk,
- Abstract要約: Coalescent Projection (CP) はソフトプロンプトの効果的な後継である。
SST(Self-Supervised Transformations)は、異なるドメインから見知らぬサンプルに遭遇するネットワークを準備するために提案される。
- 参考スコア(独自算出の注目度): 6.178597284949811
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the progress in Cross-Domain Few-Shot Learning (CD-FSL), a model pre-trained with DINO combined with a prototypical classifier outperforms the latest SOTA methods. A crucial limitation that needs to be overcome is that updating too many parameters of the transformers leads to overfitting due to the scarcity of labeled samples. To address this challenge, we propose a new concept, Coalescent Projection (CP), as an effective successor to soft prompts. Additionally, we propose a novel pseudo-class generation method combined with Self-Supervised Transformations (SSTs) that relies solely on the base domain to prepare the network for encountering unseen samples from different domains. The proposed method exhibits its effectiveness in comprehensive experiments on the extreme domain shift scenario of the BSCD-FSL benchmark. Our code is published at https://github.com/Naeem-Paeedeh/CPLSR.
- Abstract(参考訳): クロスドメインFew-Shot Learning (CD-FSL)の進歩にもかかわらず、DINOで事前訓練されたモデルと原型分類器の組み合わせは、最新のSOTA法より優れている。
克服すべき重要な制限は、トランスフォーマーのパラメータが多すぎると、ラベル付きサンプルの不足により過度に適合してしまうことである。
この課題に対処するため、我々はソフトプロンプトの効果的な後継として、新しい概念であるCoalescent Projection (CP)を提案する。
さらに,新たな擬似クラス生成手法を,ベースドメインのみに依存する自己監視変換(SST)と組み合わせて提案する。
提案手法は,BSCD-FSLベンチマークの極端領域シフトシナリオに関する包括的実験において,その有効性を示す。
私たちのコードはhttps://github.com/Naeem-Paeedeh/CPLSRで公開されています。
関連論文リスト
- Multi-Prompt Progressive Alignment for Multi-Source Unsupervised Domain Adaptation [73.40696661117408]
未ラベルの下流タスクにCLIPを適用するためのプログレッシブアライメント戦略を提案する。
私たちはアプローチをMP2Aと名付け、ImageCLEF、Office-Home、そして最も難しいDomainNetという3つの人気のあるUDAベンチマークでテストします。
実験によると、MP2Aは最新のCLIPベースのMS-UDAアプローチと比較して最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-07-31T09:42:42Z) - Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation [67.80294336559574]
連続テスト時間適応(CTTA)は、新しいシナリオに継続的に適応するために、ソース事前訓練されたモデルを必要とするタスクである。
我々は、OoPkと呼ばれるオンライン事前知識を集約する新しいパイプラインOrthogonal Projection Subspaceを提案する。
論文 参考訳(メタデータ) (2025-06-23T18:17:39Z) - Multiple Stochastic Prompt Tuning for Practical Cross-Domain Few Shot Learning [14.85375816073596]
本稿では、CLIPのような大規模事前学習モデルを簡単にターゲットデータセットにデプロイできるクロスドメイン・数ショット学習タスクを提案する。
ゴールは、クラスごとにラベル付けされたサンプルだけを利用することで、極端なドメインシフトの下で、すべての見えないクラスを同時に分類することである。
本稿では,MIST(MultIple STochastic Prompt tuning)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-04T13:18:04Z) - Step-wise Distribution Alignment Guided Style Prompt Tuning for Source-free Cross-domain Few-shot Learning [53.60934432718044]
クロスドメインの少数ショット学習手法は、アクセス不能なソースデータとトレーニング戦略により、大規模事前学習モデルの課題に直面している。
本稿では,ステップワイド配向ガイド型プロンプトチューニング(StepSPT)を紹介する。
StepSPTは予測分布最適化を通じて暗黙的にドメインギャップを狭める。
論文 参考訳(メタデータ) (2024-11-15T09:34:07Z) - CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning [17.614980614656407]
インクリメンタル・プロンプト学習のための連続的生成学習を提案する。
変分オートエンコーダを用いてクラス条件分布を学習する。
このような生成的リプレイアプローチは、ゼロショット機能を改善しつつ、新しいタスクに適応できることを示す。
論文 参考訳(メタデータ) (2024-07-22T16:51:28Z) - DiffClass: Diffusion-Based Class Incremental Learning [30.514281721324853]
クラスインクリメンタルラーニング(CIL)は破滅的な忘れが原因で困難である。
最近の例のないCIL手法は、過去のタスクデータを合成することによって破滅的な忘れを軽減しようとする。
そこで本研究では,これらの問題を克服するために,新しい非定型CIL法を提案する。
論文 参考訳(メタデータ) (2024-03-08T03:34:18Z) - GRSDet: Learning to Generate Local Reverse Samples for Few-shot Object
Detection [15.998148904793426]
Few-shot Object Detection (FSOD) は、いくつかの新しいクラストレーニングデータを用いてのみオブジェクト検出を実現することを目的としている。
既存の手法の多くは、新しいクラス分布を構築するために移行学習戦略を採用するのが一般的である。
本稿では,新しいクラス分布の中心位置と境界範囲を適応的に調整するために,プロトタイプ参照フレームに局所逆サンプル(LRSamples)を生成することを提案する。
論文 参考訳(メタデータ) (2023-12-27T13:36:29Z) - Exploring Efficient Few-shot Adaptation for Vision Transformers [70.91692521825405]
そこで本稿では,Few-shot LearningタスクにおけるVTの微調整を容易にするトランスフォーマーチューニング(eTT)手法を提案する。
新しく発表されたAttentive Prefix Tuning(APT)とDomain Residual Adapter(DRA)の主な新機能
我々は,我々のモデルの有効性を示す広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-01-06T08:42:05Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - A Transductive Multi-Head Model for Cross-Domain Few-Shot Learning [72.30054522048553]
本稿では,クロスドメインなFew-Shot学習問題に対処するため,TMHFS(Transductive Multi-Head Few-Shot Learning)を提案する。
提案手法は, 4つの異なる対象領域において, 強いベースライン, 微調整を著しく上回っている。
論文 参考訳(メタデータ) (2020-06-08T02:39:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。