論文の概要: Conditional Video Generation for High-Efficiency Video Compression
- arxiv url: http://arxiv.org/abs/2507.15269v1
- Date: Mon, 21 Jul 2025 06:16:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.278287
- Title: Conditional Video Generation for High-Efficiency Video Compression
- Title(参考訳): 高効率映像圧縮のための条件付き映像生成
- Authors: Fangqiu Yi, Jingyu Xu, Jiawei Shao, Chi Zhang, Xuelong Li,
- Abstract要約: 本稿では,条件付き拡散モデルを利用した映像圧縮フレームワークを提案する。
具体的には、映像圧縮を条件生成タスクとして再構成し、生成モデルがスパース信号から映像を合成する。
- 参考スコア(独自算出の注目度): 47.011087624381524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perceptual studies demonstrate that conditional diffusion models excel at reconstructing video content aligned with human visual perception. Building on this insight, we propose a video compression framework that leverages conditional diffusion models for perceptually optimized reconstruction. Specifically, we reframe video compression as a conditional generation task, where a generative model synthesizes video from sparse, yet informative signals. Our approach introduces three key modules: (1) Multi-granular conditioning that captures both static scene structure and dynamic spatio-temporal cues; (2) Compact representations designed for efficient transmission without sacrificing semantic richness; (3) Multi-condition training with modality dropout and role-aware embeddings, which prevent over-reliance on any single modality and enhance robustness. Extensive experiments show that our method significantly outperforms both traditional and neural codecs on perceptual quality metrics such as Fr\'echet Video Distance (FVD) and LPIPS, especially under high compression ratios.
- Abstract(参考訳): 知覚学的研究は、条件付き拡散モデルが人間の視覚的知覚と整合した映像コンテンツを再構成する際に優れていることを示した。
この知見に基づいて,条件付き拡散モデルを利用した映像圧縮フレームワークを提案する。
具体的には、映像圧縮を条件生成タスクとして再構成し、生成モデルがスパース信号から映像を合成する。
提案手法では,(1)静的なシーン構造と動的時空間の両方をキャプチャするマルチグラニュラー条件付け,(2)意味的豊かさを犠牲にすることなく効率的に伝送できるように設計されたコンパクト表現,(3)モダリティ・ドロップアウトとロール・アウェア・埋め込みによるマルチコンディション・トレーニングにより,任意の単一モードに対する過度な依存を防止し,ロバスト性を高める。
Fr'echet Video Distance(FVD)やLPIPS(LPIPS)などの知覚的品質指標において,従来のコーデックとニューラルコーデックの両方を高い圧縮比で有意に上回る結果が得られた。
関連論文リスト
- REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder [52.698595889988766]
生成モデルのためのビデオ埋め込み学習について,新しい視点を提示する。
入力ビデオの正確な再生を必要とせず、効果的な埋め込みは視覚的に妥当な再構築に焦点を当てるべきである。
本稿では,従来のエンコーダ・デコーダ・ビデオ埋め込みをエンコーダ・ジェネレータ・フレームワークに置き換えることを提案する。
論文 参考訳(メタデータ) (2025-03-11T17:51:07Z) - Rethinking Video Tokenization: A Conditioned Diffusion-based Approach [58.164354605550194]
新しいトークン化ツールであるDiffusion Conditioned-based Gene Tokenizerは、GANベースのデコーダを条件付き拡散モデルで置き換える。
再建に基本的MSE拡散損失とKL項,LPIPSを併用した訓練を行った。
CDTのスケールダウン版(3$times inference speedup)でさえ、トップベースラインと互換性がある。
論文 参考訳(メタデータ) (2025-03-05T17:59:19Z) - Progressive Growing of Video Tokenizers for Temporally Compact Latent Spaces [20.860632218272094]
ビデオトークン化器は遅延ビデオ拡散モデルに必須であり、生のビデオデータを遅延空間に変換して効率的なトレーニングを行う。
時間圧縮を強化するための代替手法を提案する。
本研究では, 高度圧縮ブロックを, 十分に訓練された低圧縮モデル上で段階的に訓練する, ブートストラップ付き高時間圧縮モデルを開発した。
論文 参考訳(メタデータ) (2025-01-09T18:55:15Z) - M3-CVC: Controllable Video Compression with Multimodal Generative Models [17.49397141459785]
M3-CVCは、生成モデルを組み込んだ制御可能なビデオ圧縮フレームワークである。
以上の結果から,M3-CVCは超低シナリオにおいて最先端のVVCを著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-24T11:56:59Z) - Improved Video VAE for Latent Video Diffusion Model [55.818110540710215]
ビデオオートエンコーダ(VAE)は、ピクセルデータを低次元の潜在空間に圧縮することを目的としており、OpenAIのSoraで重要な役割を果たしている。
既存のVAEのほとんどは、時間空間圧縮のために3次元因果構造に事前訓練された画像VAEを注入する。
ビデオVAE(IV-VAE)をさらに改善するための新しいKTCアーキテクチャとGCConvモジュールを提案する。
論文 参考訳(メタデータ) (2024-11-10T12:43:38Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [118.72266141321647]
CMVC(Cross-Modality Video Coding)は、ビデオ符号化における多モード表現とビデオ生成モデルを探索する先駆的な手法である。
復号化の際には、以前に符号化されたコンポーネントとビデオ生成モデルを利用して複数の復号モードを生成する。
TT2Vは効果的な意味再構成を実現し,IT2Vは競争力のある知覚整合性を示した。
論文 参考訳(メタデータ) (2024-08-15T11:36:18Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - Scene Matters: Model-based Deep Video Compression [13.329074811293292]
本稿では,シーンを映像シーケンスの基本単位とみなすモデルベースビデオ圧縮(MVC)フレームワークを提案する。
提案したMVCは,1シーンでビデオシーケンス全体の新しい強度変化を直接モデル化し,冗長性を低減せず,非冗長表現を求める。
提案手法は,最新のビデオ標準H.266に比べて最大20%の削減を実現し,既存のビデオ符号化方式よりもデコーディングの効率がよい。
論文 参考訳(メタデータ) (2023-03-08T13:15:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。