When Relevance Meets Novelty: Dual-Stable Periodic Optimization for Exploratory Recommendation
- URL: http://arxiv.org/abs/2508.00450v1
- Date: Fri, 01 Aug 2025 09:10:56 GMT
- Title: When Relevance Meets Novelty: Dual-Stable Periodic Optimization for Exploratory Recommendation
- Authors: Hongxiang Lin, Hao Guo, Zeshun Li, Erpeng Xue, Yongqian He, Xiangyu Hou, Zhaoyu Hu, Lei Wang, Sheng Chen,
- Abstract summary: Large language models (LLMs) demonstrate potential with their diverse content generation capabilities.<n>Existing LLM-enhanced dual-model frameworks face two major limitations.<n>First, they overlook long-term preferences driven by group identity, leading to biased interest modeling.<n>Second, they suffer from static optimization flaws, as a one-time alignment process fails to leverage incremental user data for closed-loop optimization.
- Score: 6.663356205396985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional recommendation systems tend to trap users in strong feedback loops by excessively pushing content aligned with their historical preferences, thereby limiting exploration opportunities and causing content fatigue. Although large language models (LLMs) demonstrate potential with their diverse content generation capabilities, existing LLM-enhanced dual-model frameworks face two major limitations: first, they overlook long-term preferences driven by group identity, leading to biased interest modeling; second, they suffer from static optimization flaws, as a one-time alignment process fails to leverage incremental user data for closed-loop optimization. To address these challenges, we propose the Co-Evolutionary Alignment (CoEA) method. For interest modeling bias, we introduce Dual-Stable Interest Exploration (DSIE) module, jointly modeling long-term group identity and short-term individual interests through parallel processing of behavioral sequences. For static optimization limitations, we design a Periodic Collaborative Optimization (PCO) mechanism. This mechanism regularly conducts preference verification on incremental data using the Relevance LLM, then guides the Novelty LLM to perform fine-tuning based on the verification results, and subsequently feeds back the output of the incrementally fine-tuned Novelty LLM to the Relevance LLM for re-evaluation, thereby achieving a dynamic closed-loop optimization. Extensive online and offline experiments verify the effectiveness of the CoEA model in exploratory recommendation.
Related papers
- A Novel Self-Evolution Framework for Large Language Models [18.62332474172811]
We propose a novel Dual-Phase Self-Evolution framework to jointly optimize user preference adaptation and domain-specific competence.<n>Experiments across general NLP benchmarks and long-term dialogue tasks demonstrate that DPSE consistently outperforms Supervised Fine-Tuning, Preference Optimization, and Memory-Augmented baselines.
arXiv Detail & Related papers (2025-07-21T06:30:39Z) - LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
We present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation.<n>Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity.<n>Our framework exhibits seamless compatibility with existing advanced models, further improving their recommendation performance.
arXiv Detail & Related papers (2025-05-22T16:22:54Z) - Modality-Balancing Preference Optimization of Large Multimodal Models by Adversarial Negative Mining [66.54211199959298]
We propose a novel preference learning framework, Modality-Balancing Preference Optimization (MBPO), to address the modality imbalance in LMMs.<n>MBPO constructs a more effective offline preference dataset by generating hard negatives, i.e., rejected responses misled by LLM biases.<n>It can enhance LMM performance on challenging vision-language tasks and effectively reduce hallucinations.
arXiv Detail & Related papers (2025-05-20T03:59:05Z) - LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation [34.227734210743904]
Collaborative filtering models have shown strong performance in capturing user-item interactions for recommendation systems.<n>The emergence of large language models (LLMs) like GPT and LLaMA presents new possibilities for enhancing recommendation performance.
arXiv Detail & Related papers (2025-03-03T18:41:59Z) - Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - CALRec: Contrastive Alignment of Generative LLMs for Sequential Recommendation [18.986613405565514]
Large Language Models (LLMs) are pretrained on vast corpora of text for sequential recommendation.
We propose a two-stage LLM finetuning framework that finetunes a pretrained LLM in a two-tower fashion using a mixture of two contrastive losses and a language modeling loss.
Our model significantly outperforms many state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-03T18:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.