Resource-Efficient Cross-Platform Verification with Modular Superconducting Devices
- URL: http://arxiv.org/abs/2507.15302v1
- Date: Mon, 21 Jul 2025 06:59:43 GMT
- Title: Resource-Efficient Cross-Platform Verification with Modular Superconducting Devices
- Authors: Kieran Dalton, Johannes Knörzer, Finn Hoehne, Yongxin Song, Alexander Flasby, Dante Colao Zanuz, Mohsen Bahrami Panah, Ilya Besedin, Jean-Claude Besse, Andreas Wallraff,
- Abstract summary: Cross-platform verification protocols are critical for quantifying how accurately different modules prepare the same quantum state.<n>We demonstrate these algorithms using a six-qubit flip-chip superconducting quantum device consisting of two three-qubit modules on a single carrier chip.
- Score: 32.73124984242397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale quantum computers are expected to benefit from modular architectures. Validating the capabilities of modular devices requires benchmarking strategies that assess performance within and between modules. In this work, we evaluate cross-platform verification protocols, which are critical for quantifying how accurately different modules prepare the same quantum state -- a key requirement for modular scalability and system-wide consistency. We demonstrate these algorithms using a six-qubit flip-chip superconducting quantum device consisting of two three-qubit modules on a single carrier chip, with connectivity for intra- and inter-module entanglement. We examine how the resource requirements of protocols relying solely on classical communication between modules scale exponentially with qubit number, and demonstrate that introducing an inter-module two-qubit gate enables sub-exponential scaling in cross-platform verification. This approach reduces the number of repetitions required by a factor of four for three-qubit states, with greater reductions projected for larger and higher-fidelity devices.
Related papers
- Scalable modular architecture for universal quantum computation [49.1574468325115]
We show that it is sufficient to connect two qubit arrays that are evolution operator controllable by a single entangling two-qubit gate.<n>Our proof provides a template to build up modular QPUs from smaller building blocks with reduced numbers of local controls and couplings.
arXiv Detail & Related papers (2025-07-19T16:45:47Z) - State Similarity in Modular Superconducting Quantum Processors with Classical Communications [41.94024259927014]
We propose a cross-platform fidelity estimation algorithm tailored for modular architectures.<n>We experimentally implement the protocol on modular superconducting quantum processors with up to 6 qubits to verify the similarity of two 11-qubit GHZ states.<n>As a proof of concept, we apply it to a 5-qubit quantum phase learning task using six 3-qubit modules, successfully extracting phase information with just eight training samples.
arXiv Detail & Related papers (2025-06-02T13:27:38Z) - Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers [63.42120407991982]
Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.<n>We present a design for a multi-chip module comprising one carrier chip and four qubit modules.<n>Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.<n>We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
arXiv Detail & Related papers (2025-03-16T18:32:44Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Variational Quantum Eigensolvers in the Era of Distributed Quantum
Computers [0.0]
We show that a distributed quantum computing architecture with it limited capacity to exchange information between modules can accurately solve quantum computational problems.
Results provide a strong indication that near-term it modular quantum processors can be an effective alternative to their monolithic counterparts.
arXiv Detail & Related papers (2023-02-27T19:00:01Z) - Graph test of controllability in qubit arrays: A systematic way to
determine the minimum number of external controls [62.997667081978825]
We show how to leverage an alternative approach, based on a graph representation of the Hamiltonian, to determine controllability of arrays of coupled qubits.
We find that the number of controls can be reduced from five to one for complex qubit-qubit couplings.
arXiv Detail & Related papers (2022-12-09T12:59:44Z) - Squeezeformer: An Efficient Transformer for Automatic Speech Recognition [99.349598600887]
Conformer is the de facto backbone model for various downstream speech tasks based on its hybrid attention-convolution architecture.
We propose the Squeezeformer model, which consistently outperforms the state-of-the-art ASR models under the same training schemes.
arXiv Detail & Related papers (2022-06-02T06:06:29Z) - Tunable coupling of widely separated superconducting qubits: A possible
application towards a modular quantum device [8.202696420047168]
We propose a conceptual design of a modular quantum device, where nearby modules are spatially separated by centimeters.
In principle, each module can contain tens of superconducting qubits, and can be separately fabricated, characterized, packaged, and replaced.
We expect that sub-100-ns two-qubit gates for qubits housed in nearby modules which are spatially separated by more than two centimeters could be obtained.
arXiv Detail & Related papers (2022-01-10T06:29:35Z) - Realizing all-to-all couplings among detachable quantum modules using a
microwave quantum state router [1.2402408527122377]
We present a microwave quantum state router, centered on Josephson-junction based three-wave mixing, that realizes all-to-all couplings among four detachable quantum modules.
We demonstrate coherent exchange among all four communication modes, with an average full-iSWAP time of 764ns and average inferred inter-module exchange fidelity of 0.969, limited by mode coherence.
Our router-module architecture serves as a prototype of modular quantum computer that has great potential for enabling flexible, demountable, large-scale quantum networks of superconducting qubits and cavities.
arXiv Detail & Related papers (2021-09-14T17:41:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.