Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers
- URL: http://arxiv.org/abs/2503.12603v1
- Date: Sun, 16 Mar 2025 18:32:44 GMT
- Title: Performance Characterization of a Multi-Module Quantum Processor with Static Inter-Chip Couplers
- Authors: Graham J. Norris, Kieran Dalton, Dante Colao Zanuz, Alexander Rommens, Alexander Flasby, Mohsen Bahrami Panah, François Swiadek, Colin Scarato, Christoph Hellings, Jean-Claude Besse, Andreas Wallraff,
- Abstract summary: Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors.<n>We present a design for a multi-chip module comprising one carrier chip and four qubit modules.<n>Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 times 10-3$ in 200 ns.<n>We demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 times 10-3$ extracted from interleaved randomized benchmarking.
- Score: 63.42120407991982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Three-dimensional integration technologies such as flip-chip bonding are a key prerequisite to realize large-scale superconducting quantum processors. Modular architectures, in which circuit elements are spread over multiple chips, can further improve scalability and performance by enabling the integration of elements with different substrates or fabrication processes, by increasing the fabrication yield of completed devices, and by physically separating the qubits onto distinct modules to avoid correlated errors mediated by a common substrate. We present a design for a multi-chip module comprising one carrier chip and four qubit modules. Measuring two of the qubits, we analyze the readout performance, finding a mean three-level state-assignment error of $9 \times 10^{-3}$ in 200 ns. We calibrate single-qubit gates and measure a mean simultaneous randomized benchmarking error of $6 \times 10^{-4}$, consistent with the coherence times of the qubits. Using a wiring-efficient static inter-module coupler featuring galvanic inter-chip transitions, we demonstrate a controlled-Z two-qubit gate in 100 ns with an error of $7 \times 10^{-3}$ extracted from interleaved randomized benchmarking. Three-dimensional integration, as presented here, will continue to contribute to improving the performance of gates and readout as well as increasing the qubit count in future superconducting quantum processors.
Related papers
- Single-step high-fidelity three-qubit gates by anisotropic chiral interactions [0.0]
Direct multi-qubit gates are critical to facilitate quantum computations in near-term devices by reducing the gate counts and circuit depth.
Here, we demonstrate that fast and high fidelity three-qubit gates can be realized in a single step by leveraging small anisotropic and chiral three-qubit interactions.
arXiv Detail & Related papers (2025-03-15T15:54:00Z) - Modular quantum processor with an all-to-all reconfigurable router [34.39074227074929]
We propose a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio.
We demonstrate reconfigurable controlled-Z gates across all qubit pairs, with a benchmarked average fidelity of $96.00%pm0.08%$.
We also generate multi-qubit entanglement, distributed across the separate modules, demonstrating GHZ-3 and GHZ-4 states with fidelities of $88.15%pm0.24%$ and $75.18%pm0.11%$, respectively.
arXiv Detail & Related papers (2024-07-29T16:02:03Z) - Parametric multi-element coupling architecture for coherent and
dissipative control of superconducting qubits [0.0]
We present a superconducting qubit architecture based on tunable parametric interactions to perform two-qubit gates, reset, leakage recovery and to read out the qubits.
We experimentally demonstrate a controlled-Z gate with a fidelity of $98.30pm 0.23 %$, a reset operation that unconditionally prepares the qubit ground state with a fidelity of $99.80pm 0.02 %$ and a leakage recovery operation with a $98.5pm 0.3 %$ success probability.
arXiv Detail & Related papers (2024-03-04T16:49:36Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Fluxonium Qubits in a Flip-Chip Package [0.6049992212584339]
We report work on fluxonium qubits packaged in a flip-chip architecture, where a classical control and readout chip is bump-bonded to the quantum chip.
We characterize the coherence properties of the individual fluxonium qubits, demonstrate high fidelity single-qubit gates with 6 ns microwave pulses, and identify the main decoherence mechanisms to improve on the reported results.
arXiv Detail & Related papers (2023-03-02T18:42:20Z) - Graph test of controllability in qubit arrays: A systematic way to
determine the minimum number of external controls [62.997667081978825]
We show how to leverage an alternative approach, based on a graph representation of the Hamiltonian, to determine controllability of arrays of coupled qubits.
We find that the number of controls can be reduced from five to one for complex qubit-qubit couplings.
arXiv Detail & Related papers (2022-12-09T12:59:44Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Building Blocks of a Flip-Chip Integrated Superconducting Quantum
Processor [1.5465992780403517]
We have integrated single and coupled superconducting transmon qubits into flip-chip modules.
We demonstrate time-averaged coherence times exceeding $90,mu s$, single-qubit gate fidelities exceeding $99.9%$, and two-qubit gate fidelities above $98.6%$.
arXiv Detail & Related papers (2021-12-06T00:14:59Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.