To Label or Not to Label: PALM -- A Predictive Model for Evaluating Sample Efficiency in Active Learning Models
- URL: http://arxiv.org/abs/2507.15381v1
- Date: Mon, 21 Jul 2025 08:37:44 GMT
- Title: To Label or Not to Label: PALM -- A Predictive Model for Evaluating Sample Efficiency in Active Learning Models
- Authors: Julia Machnio, Mads Nielsen, Mostafa Mehdipour Ghazi,
- Abstract summary: Active learning (AL) seeks to reduce annotation costs by selecting the most informative samples for labeling.<n>Traditional evaluation methods, which focus solely on final accuracy, fail to capture the full dynamics of the learning process.<n>We propose PALM, a unified and interpretable mathematical model that characterizes AL trajectories through four key parameters.
- Score: 2.2667044928324747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning (AL) seeks to reduce annotation costs by selecting the most informative samples for labeling, making it particularly valuable in resource-constrained settings. However, traditional evaluation methods, which focus solely on final accuracy, fail to capture the full dynamics of the learning process. To address this gap, we propose PALM (Performance Analysis of Active Learning Models), a unified and interpretable mathematical model that characterizes AL trajectories through four key parameters: achievable accuracy, coverage efficiency, early-stage performance, and scalability. PALM provides a predictive description of AL behavior from partial observations, enabling the estimation of future performance and facilitating principled comparisons across different strategies. We validate PALM through extensive experiments on CIFAR-10/100 and ImageNet-50/100/200, covering a wide range of AL methods and self-supervised embeddings. Our results demonstrate that PALM generalizes effectively across datasets, budgets, and strategies, accurately predicting full learning curves from limited labeled data. Importantly, PALM reveals crucial insights into learning efficiency, data space coverage, and the scalability of AL methods. By enabling the selection of cost-effective strategies and predicting performance under tight budget constraints, PALM lays the basis for more systematic, reproducible, and data-efficient evaluation of AL in both research and real-world applications. The code is available at: https://github.com/juliamachnio/PALM.
Related papers
- Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation [2.0411082897313984]
This study introduces a novel methodology that integrates human annotators and Large Language Models.
The proposed framework integrates human annotation with the output of LLMs, depending on the model uncertainty levels.
The empirical results show a substantial decrease in the costs associated with data annotation while either maintaining or improving model accuracy.
arXiv Detail & Related papers (2024-06-17T21:45:48Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
Foundational vision transformer models have shown impressive few shot performance on many vision tasks.
This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework.
arXiv Detail & Related papers (2024-06-13T16:30:32Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
We introduce a novel framework, Balancing Active Learning (BAL), which constructs adaptive sub-pools to balance diverse and uncertain data.
Our approach outperforms all established active learning methods on widely recognized benchmarks by 1.20%.
arXiv Detail & Related papers (2023-12-26T08:14:46Z) - Aligning Data Selection with Performance: Performance-driven Reinforcement Learning for Active Learning in Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)<n>MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.<n>Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - ALE: A Simulation-Based Active Learning Evaluation Framework for the
Parameter-Driven Comparison of Query Strategies for NLP [3.024761040393842]
Active Learning (AL) proposes promising data points to annotators they annotate next instead of a subsequent or random sample.
This method is supposed to save annotation effort while maintaining model performance.
We introduce a reproducible active learning evaluation framework for the comparative evaluation of AL strategies in NLP.
arXiv Detail & Related papers (2023-08-01T10:42:11Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
We propose the first effective query strategy for Active Learning in abstractive text summarization.
We show that using our strategy in AL annotation helps to improve the model performance in terms of ROUGE and consistency scores.
arXiv Detail & Related papers (2023-01-09T10:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.