The Emergence of Deep Reinforcement Learning for Path Planning
- URL: http://arxiv.org/abs/2507.15469v1
- Date: Mon, 21 Jul 2025 10:21:42 GMT
- Title: The Emergence of Deep Reinforcement Learning for Path Planning
- Authors: Thanh Thi Nguyen, Saeid Nahavandi, Imran Razzak, Dung Nguyen, Nhat Truong Pham, Quoc Viet Hung Nguyen,
- Abstract summary: Deep reinforcement learning (DRL) has emerged as a powerful method for enabling autonomous agents to learn optimal navigation strategies.<n>This survey provides a comprehensive overview of traditional approaches as well as the recent advancements in DRL applied to path planning tasks.<n>The survey concludes by identifying key open challenges and outlining promising avenues for future research.
- Score: 27.08547928141541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing demand for autonomous systems in complex and dynamic environments has driven significant research into intelligent path planning methodologies. For decades, graph-based search algorithms, linear programming techniques, and evolutionary computation methods have served as foundational approaches in this domain. Recently, deep reinforcement learning (DRL) has emerged as a powerful method for enabling autonomous agents to learn optimal navigation strategies through interaction with their environments. This survey provides a comprehensive overview of traditional approaches as well as the recent advancements in DRL applied to path planning tasks, focusing on autonomous vehicles, drones, and robotic platforms. Key algorithms across both conventional and learning-based paradigms are categorized, with their innovations and practical implementations highlighted. This is followed by a thorough discussion of their respective strengths and limitations in terms of computational efficiency, scalability, adaptability, and robustness. The survey concludes by identifying key open challenges and outlining promising avenues for future research. Special attention is given to hybrid approaches that integrate DRL with classical planning techniques to leverage the benefits of both learning-based adaptability and deterministic reliability, offering promising directions for robust and resilient autonomous navigation.
Related papers
- Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in Evolutionary optimization.<n>We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms.<n>For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing.
arXiv Detail & Related papers (2025-04-08T15:21:01Z) - A Systematic Decade Review of Trip Route Planning with Travel Time Estimation based on User Preferences and Behavior [0.0]
This paper systematically explores the advancements in adaptive trip route planning and travel time estimation through Artificial Intelligence (AI)<n>established AI techniques, including Machine Learning (ML), Reinforcement Learning (RL), and Graph Neural Networks (GNNs)<n>The paper concludes with recommendations for leveraging AI to build efficient, transparent, and sustainable navigation systems.
arXiv Detail & Related papers (2025-03-30T15:41:44Z) - Intelligent Offloading in Vehicular Edge Computing: A Comprehensive Review of Deep Reinforcement Learning Approaches and Architectures [9.21746609806009]
complexity of Intelligent Transportation Systems (ITS) has led to significant interest in computational offloading to external infrastructures such as edge servers, vehicular nodes, and UAVs.<n>Recent advances in Deep Reinforcement Learning (DRL)-based offloading for vehicular edge computing (VEC)<n>We classify and compare existing works based on learning paradigms (e.g., single-agent, multi-agent), system architectures (e.g., centralized, distributed, hierarchical), and optimization objectives (e.g., latency, energy, fairness)
arXiv Detail & Related papers (2025-02-10T19:02:20Z) - Research on Autonomous Robots Navigation based on Reinforcement Learning [13.559881645869632]
We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process.
We have verified the effectiveness and robustness of these models in various complex scenarios.
arXiv Detail & Related papers (2024-07-02T00:44:06Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Experience-Based Heuristic Search: Robust Motion Planning with Deep
Q-Learning [0.0]
We show how experiences in the form of a Deep Q-Network can be integrated as optimal policy in a search algorithm.
Our method may encourage further investigation of the applicability of reinforcement-learning-based planning in the field of self-driving vehicles.
arXiv Detail & Related papers (2021-02-05T12:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.