Unconventional photon blockade in a hybrid optomechanical system with an embedded spin-triplet
- URL: http://arxiv.org/abs/2507.15605v1
- Date: Mon, 21 Jul 2025 13:28:21 GMT
- Title: Unconventional photon blockade in a hybrid optomechanical system with an embedded spin-triplet
- Authors: Yao Dong, Jing-jing Wang, Guo-Feng Zhang,
- Abstract summary: The research article studies the unconventional photon blockade effect in a hybrid optomechanical system with an embedded spin-triplet state.<n>The interaction between the optomechanical system and the spin state generates new transition paths for the destructive quantum interference of the two-photon excitation state.
- Score: 5.043114055522427
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The research article studies the unconventional photon blockade effect in a hybrid optomechanical system with an embedded spin-triplet state. The interaction between the optomechanical system and the spin state generates new transition paths for the destructive quantum interference of the two-photon excitation state. By analytically solving the Schrodinger equation and numerically simulating the master equation, it can be found that the modulated mechanical dissipation is essential for achieving the strong photon blockade in our system. Unlike the conventional cavity optomechanical system, the second-order correlation function g(2)(0) =0 can be obtained with the weak single-photon optomechanical coupling. By adjusting the system parameters, the strong photon blockade and the single-photon resonance can coincide, which indicates the hybrid system has the potential to be a high-quality and efficient single-photon source. Finally, the influence of the thermal noise on photon blockade is investigated. The results show that the second-order correlation function is more robust for the weaker phonon-spin coupling.
Related papers
- Simultaneous photon and phonon lasing in a two-tone driven optomechanical system [1.81283871144609]
We show how to achieve simultaneous lasing of photons and phonons in optomechanical setups.
Our work paves the way for the development of novel strategies for the optimisation of optomechanical interactions.
arXiv Detail & Related papers (2024-10-03T17:16:41Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Coupling enhancement and symmetrization of single-photon optomechanics
in open quantum systems [0.76146285961466]
We study optimal reciprocal transport in symmetric optomechanics.
This work may pave the way to studying the single-photon optomechanical effects with current experimental platforms.
arXiv Detail & Related papers (2023-02-09T19:01:15Z) - Strong photon antibunching effect in a double cavity optomechanical
system with intracavity squeezed light [0.0]
We study the behaviour of the second-order correlation function in a double cavity optomechanical system.
For suitable values of optomechanical coupling strength, the system can exhibit a very strong photon antibunching effect.
Our study can be also used for the generation of single photon in coupled nonlinear optomechanical systems.
arXiv Detail & Related papers (2022-09-15T16:01:39Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Strong single-photon optomechanical coupling in a hybrid quantum system [2.5611225024281166]
We propose a hybrid quantum system consisting of a nanobeam (phonons) coupled to a spin ensemble and a cavity (photons) to overcome it.
Our proposed approach can be used to study quantum nonlinear and nonclassical effects in weakly coupled optomechanical systems.
arXiv Detail & Related papers (2021-05-12T00:51:36Z) - Photon blockade in a double-cavity optomechanical system with
nonreciprocal coupling [0.4893345190925178]
We investigate the statistical properties of photons in a double-cavity optomechanical system with nonreciprocal coupling.
Our proposal provides a feasible and flexible platform for the realization of single-photon source.
arXiv Detail & Related papers (2020-07-28T09:53:27Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.