Uncovering Critical Features for Deepfake Detection through the Lottery Ticket Hypothesis
- URL: http://arxiv.org/abs/2507.15636v1
- Date: Mon, 21 Jul 2025 13:58:24 GMT
- Title: Uncovering Critical Features for Deepfake Detection through the Lottery Ticket Hypothesis
- Authors: Lisan Al Amin, Md. Ismail Hossain, Thanh Thi Nguyen, Tasnim Jahan, Mahbubul Islam, Faisal Quader,
- Abstract summary: Deepfake technology poses significant challenges to information integrity and social trust.<n>This study investigates the application of the Lottery Ticket Hypothesis (LTH) to deepfake detection.<n>We examine how neural networks can be efficiently pruned while maintaining high detection accuracy.
- Score: 1.723963662326051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deepfake technology have created increasingly convincing synthetic media that poses significant challenges to information integrity and social trust. While current detection methods show promise, their underlying mechanisms remain poorly understood, and the large sizes of their models make them challenging to deploy in resource-limited environments. This study investigates the application of the Lottery Ticket Hypothesis (LTH) to deepfake detection, aiming to identify the key features crucial for recognizing deepfakes. We examine how neural networks can be efficiently pruned while maintaining high detection accuracy. Through extensive experiments with MesoNet, CNN-5, and ResNet-18 architectures on the OpenForensic and FaceForensics++ datasets, we find that deepfake detection networks contain winning tickets, i.e., subnetworks, that preserve performance even at substantial sparsity levels. Our results indicate that MesoNet retains 56.2% accuracy at 80% sparsity on the OpenForensic dataset, with only 3,000 parameters, which is about 90% of its baseline accuracy (62.6%). The results also show that our proposed LTH-based iterative magnitude pruning approach consistently outperforms one-shot pruning methods. Using Grad-CAM visualization, we analyze how pruned networks maintain their focus on critical facial regions for deepfake detection. Additionally, we demonstrate the transferability of winning tickets across datasets, suggesting potential for efficient, deployable deepfake detection systems.
Related papers
- Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better [63.567886330598945]
Infrared small target (IRST) detection is challenging in simultaneously achieving precise, universal, robust and efficient performance.<n>Current learning-based methods attempt to leverage more" information from both the spatial and the short-term temporal domains.<n>We propose an efficient deep temporal probe network (DeepPro) that only performs calculations in the time dimension for IRST detection.
arXiv Detail & Related papers (2025-06-15T08:19:32Z) - Comparative Analysis of Deepfake Detection Models: New Approaches and Perspectives [0.0]
This work investigates and compares different approaches for identifying deepfakes, focusing on the GenConViT model.<n>To contextualize the research, the social and legal impacts of deepfakes are addressed, as well as the technical fundamentals of their creation and detection.<n>The obtained results indicated that GenConViT, after fine-tuning, exhibited superior performance in terms of accuracy (93.82%) and generalization capacity.
arXiv Detail & Related papers (2025-04-03T02:10:27Z) - CAE-Net: Generalized Deepfake Image Detection using Convolution and Attention Mechanisms with Spatial and Frequency Domain Features [0.6700983301090583]
We propose a disjoint set-based multistage training method to address the class imbalance and devised an ensemble-based architecture emphCAE-Net.<n>Our architecture consists of a convolution- and attention-based ensemble network, and employs three different neural network architectures.<n>Individually, the EfficientNet B0 architecture has achieved 90.79% accuracy, whereas the ConvNeXt and the DeiT architecture have achieved 89.49% and 89.32% accuracy, respectively.
arXiv Detail & Related papers (2025-02-15T06:02:11Z) - Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks [0.0]
Deepfake detection aims to contrast the spread of deep-generated media that undermines trust in online content.
We introduce a novel deepfake detection approach on images using Binary Neural Networks (BNNs) for fast inference with minimal accuracy loss.
arXiv Detail & Related papers (2024-06-07T13:37:36Z) - Unmasking Deepfake Faces from Videos Using An Explainable Cost-Sensitive
Deep Learning Approach [0.0]
Deepfake technology is widely used, which has led to serious worries about the authenticity of digital media.
This study employs a resource-effective and transparent cost-sensitive deep learning method to effectively detect deepfake faces in videos.
arXiv Detail & Related papers (2023-12-17T14:57:10Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
Facial forgery by deepfakes has caused major security risks and raised severe societal concerns.
We formulate deepfake detection as a fine-grained classification problem and propose a new fine-grained solution to it.
Our method is based on learning subtle and generalizable features by effectively suppressing background noise and learning discriminative features at various scales for deepfake detection.
arXiv Detail & Related papers (2023-10-10T21:30:05Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.