Comparative Analysis of Deepfake Detection Models: New Approaches and Perspectives
- URL: http://arxiv.org/abs/2504.02900v1
- Date: Thu, 03 Apr 2025 02:10:27 GMT
- Title: Comparative Analysis of Deepfake Detection Models: New Approaches and Perspectives
- Authors: Matheus Martins Batista,
- Abstract summary: This work investigates and compares different approaches for identifying deepfakes, focusing on the GenConViT model.<n>To contextualize the research, the social and legal impacts of deepfakes are addressed, as well as the technical fundamentals of their creation and detection.<n>The obtained results indicated that GenConViT, after fine-tuning, exhibited superior performance in terms of accuracy (93.82%) and generalization capacity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing threat posed by deepfake videos, capable of manipulating realities and disseminating misinformation, drives the urgent need for effective detection methods. This work investigates and compares different approaches for identifying deepfakes, focusing on the GenConViT model and its performance relative to other architectures present in the DeepfakeBenchmark. To contextualize the research, the social and legal impacts of deepfakes are addressed, as well as the technical fundamentals of their creation and detection, including digital image processing, machine learning, and artificial neural networks, with emphasis on Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs), and Transformers. The performance evaluation of the models was conducted using relevant metrics and new datasets established in the literature, such as WildDeep-fake and DeepSpeak, aiming to identify the most effective tools in the battle against misinformation and media manipulation. The obtained results indicated that GenConViT, after fine-tuning, exhibited superior performance in terms of accuracy (93.82%) and generalization capacity, surpassing other architectures in the DeepfakeBenchmark on the DeepSpeak dataset. This study contributes to the advancement of deepfake detection techniques, offering contributions to the development of more robust and effective solutions against the dissemination of false information.
Related papers
- Classifying Deepfakes Using Swin Transformers [12.693895808318794]
This study explores the application of Swin Transformers, a state-of-the-art architecture leveraging shifted windows for self-attention, in detecting and classifying deepfake images.
We evaluate the Swin Transformer and hybrid models such as Swin-ResNet and Swin-KNN, focusing on their ability to identify subtle manipulation artifacts.
arXiv Detail & Related papers (2025-01-26T19:35:46Z) - Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
Deep Learning has been successfully applied in diverse fields, and its impact on deepfake detection is no exception.
Deepfakes are fake yet realistic synthetic content that can be used deceitfully for political impersonation, phishing, slandering, or spreading misinformation.
This paper aims to improve the effectiveness of deepfake detection strategies and guide future research in cybersecurity and media integrity.
arXiv Detail & Related papers (2024-11-12T09:02:11Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Deepfake Detection: A Comparative Analysis [2.644723682054489]
We evaluate eight supervised deep learning architectures and two transformer-based models pre-trained using self-supervised strategies on four benchmarks.
Our analysis includes intra-dataset and inter-dataset evaluations, examining the best performing models, generalisation capabilities, and impact of augmentations.
arXiv Detail & Related papers (2023-08-07T10:57:20Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - An Experimental Evaluation on Deepfake Detection using Deep Face
Recognition [0.0]
Deep learning has led to the generation of very realistic fake content, also known as deepfakes.
Most of the current deepfake detection methods are deemed as a binary classification problem in distinguishing authentic images or videos from fake ones using two-class convolutional neural networks (CNNs)
This paper thoroughly evaluate the efficacy of deep face recognition in identifying deepfakes, using different loss functions and deepfake generation techniques.
arXiv Detail & Related papers (2021-10-04T18:02:56Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z) - DeepFake Detection by Analyzing Convolutional Traces [0.0]
We focus on the analysis of Deepfakes of human faces with the objective of creating a new detection method.
The proposed technique, by means of an Expectation Maximization (EM) algorithm, extracts a set of local features specifically addressed to model the underlying convolutional generative process.
Results demonstrated the effectiveness of the technique in distinguishing the different architectures and the corresponding generation process.
arXiv Detail & Related papers (2020-04-22T09:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.