論文の概要: Visual-Language Model Knowledge Distillation Method for Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2507.15680v3
- Date: Wed, 23 Jul 2025 08:20:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 12:00:05.671555
- Title: Visual-Language Model Knowledge Distillation Method for Image Quality Assessment
- Title(参考訳): 画像品質評価のための視覚言語モデル知識蒸留法
- Authors: Yongkang Hou, Jiarun Song,
- Abstract要約: CLIPのような視覚言語モデルに基づくマルチモーダル手法は、IQAタスクにおいて例外的な一般化機能を示す。
本研究は,CLIPのIQA知識を用いたアーキテクチャ上の利点を生かしたモデル学習の指導を目的とした,視覚言語モデル知識蒸留手法を提案する。
- 参考スコア(独自算出の注目度): 0.9821874476902972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image Quality Assessment (IQA) is a core task in computer vision. Multimodal methods based on vision-language models, such as CLIP, have demonstrated exceptional generalization capabilities in IQA tasks. To address the issues of excessive parameter burden and insufficient ability to identify local distorted features in CLIP for IQA, this study proposes a visual-language model knowledge distillation method aimed at guiding the training of models with architectural advantages using CLIP's IQA knowledge. First, quality-graded prompt templates were designed to guide CLIP to output quality scores. Then, CLIP is fine-tuned to enhance its capabilities in IQA tasks. Finally, a modality-adaptive knowledge distillation strategy is proposed to achieve guidance from the CLIP teacher model to the student model. Our experiments were conducted on multiple IQA datasets, and the results show that the proposed method significantly reduces model complexity while outperforming existing IQA methods, demonstrating strong potential for practical deployment.
- Abstract(参考訳): 画像品質評価(IQA)はコンピュータビジョンにおける中核的な課題である。
CLIPのような視覚言語モデルに基づくマルチモーダル手法は、IQAタスクにおいて例外的な一般化機能を示す。
IQAのCLIPにおける過度なパラメータ負荷と局所歪みの特徴を識別する能力の不足に対処するため,CLIPのIQA知識を用いたモデル学習の指導を目的とした視覚言語モデル知識蒸留法を提案する。
第一に、品質グレードのプロンプトテンプレートはCLIPを誘導して品質スコアを出力するように設計されている。
次に、CLIPはIQAタスクの能力を高めるために微調整される。
最後に,CLIP教師モデルから学生モデルへのガイダンスを得るためのモダリティ適応型知識蒸留戦略を提案する。
本研究では,複数のIQAデータセットを用いて実験を行い,提案手法は既存のIQA手法を上回りながらモデルの複雑さを著しく低減し,実用的展開の可能性を示した。
関連論文リスト
- Q-Insight: Understanding Image Quality via Visual Reinforcement Learning [27.26829134776367]
画像品質評価(IQA)は、画像の知覚的視覚的品質に焦点を当て、画像再構成、圧縮、生成などの下流タスクにおいて重要な役割を果たす。
グループ相対ポリシー最適化(GRPO)に基づく強化学習に基づくモデルQ-Insightを提案する。
評価結果から,Q-Insightは,評価結果の回帰と劣化知覚の両面において,既存の最先端手法を大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2025-03-28T17:59:54Z) - VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers [7.7705926659081275]
VerifierQは、オフラインQ学習を検証モデルに統合する新しいアプローチである。
LLMにQ-learningを適用する上での3つの課題に対処する。
本手法は,並列Q値計算と学習効率の向上を実現する。
論文 参考訳(メタデータ) (2024-10-10T15:43:55Z) - Boosting CLIP Adaptation for Image Quality Assessment via Meta-Prompt Learning and Gradient Regularization [55.09893295671917]
本稿では,Gdient-Regulated Meta-Prompt IQA Framework (GRMP-IQA)を紹介する。
GRMP-IQAはMeta-Prompt事前学習モジュールとQuality-Aware Gradient Regularizationの2つの主要なモジュールから構成されている。
5つの標準BIQAデータセットの実験は、限られたデータ設定下での最先端BIQA手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-09T07:26:21Z) - Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement [12.628718661568048]
我々は,人間の品質評価の過程を模倣する,一般化された視覚的注意度推定戦略を検討することを目的とする。
特に、劣化画像と参照画像の統計的依存性を測定することによって、人間の注意生成をモデル化する。
既存のIQAモデルのアテンションモジュールを組み込んだ場合、既存のIQAモデルの性能を一貫して改善できることを示す実験結果が得られた。
論文 参考訳(メタデータ) (2024-08-19T11:55:32Z) - Vision-Language Consistency Guided Multi-modal Prompt Learning for Blind AI Generated Image Quality Assessment [57.07360640784803]
視覚言語による多モーダル・プロンプト学習による画像品質評価(AGIQA)を提案する。
具体的には、コントラスト言語-画像事前学習(CLIP)モデルの言語と視覚の分岐に学習可能なテキストと視覚的プロンプトを導入する。
我々は、上記のマルチモーダルプロンプトの最適化を導くために、学習された視覚言語一貫性の知識を用いて、テキストから画像へのアライメント品質予測タスクを設計する。
論文 参考訳(メタデータ) (2024-06-24T13:45:31Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [73.6767681305851]
野生のブラインド画像品質評価(IQA)は重大な課題を呈している。
大規模なトレーニングデータの収集が困難であることを考えると、厳密な一般化モデルを開発するために限られたデータを活用することは、未解決の問題である。
事前訓練されたテキスト・ツー・イメージ(T2I)拡散モデルの堅牢な画像認識能力により,新しいIQA法,拡散先行に基づくIQAを提案する。
論文 参考訳(メタデータ) (2024-05-30T12:32:35Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
本稿では,学習可能性を評価するためにCluster Learnability (CL)を導入する。
CLは、K-meansで表現をクラスタリングすることによって得られたラベルを予測するために訓練されたKNNのパフォーマンスで測定される。
CLは、他の競合する評価手法よりも分布内モデルの性能と相関することがわかった。
論文 参考訳(メタデータ) (2022-06-02T19:05:13Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
視覚的画像品質評価(BIQA)のための簡易かつ効果的な連続学習法を提案する。
このアプローチの重要なステップは、トレーニング済みのディープニューラルネットワーク(DNN)のすべての畳み込みフィルタを凍結して、安定性を明示的に保証することです。
我々は、各新しいIQAデータセット(タスク)に予測ヘッドを割り当て、対応する正規化パラメータをロードして品質スコアを生成する。
最終的な品質推定は、軽量な$K$-meansゲーティング機構で、すべての頭からの予測の重み付け総和によって計算される。
論文 参考訳(メタデータ) (2021-07-28T15:21:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。