Efficient Face Image Quality Assessment via Self-training and Knowledge Distillation
- URL: http://arxiv.org/abs/2507.15709v1
- Date: Mon, 21 Jul 2025 15:17:01 GMT
- Title: Efficient Face Image Quality Assessment via Self-training and Knowledge Distillation
- Authors: Wei Sun, Weixia Zhang, Linhan Cao, Jun Jia, Xiangyang Zhu, Dandan Zhu, Xiongkuo Min, Guangtao Zhai,
- Abstract summary: Face image quality assessment (FIQA) is essential for various face-related applications.<n>We aim to develop a computationally efficient FIQA method that can be easily deployed in real-world applications.
- Score: 51.43664253596246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face image quality assessment (FIQA) is essential for various face-related applications. Although FIQA has been extensively studied and achieved significant progress, the computational complexity of FIQA algorithms remains a key concern for ensuring scalability and practical deployment in real-world systems. In this paper, we aim to develop a computationally efficient FIQA method that can be easily deployed in real-world applications. Specifically, our method consists of two stages: training a powerful teacher model and distilling a lightweight student model from it. To build a strong teacher model, we adopt a self-training strategy to improve its capacity. We first train the teacher model using labeled face images, then use it to generate pseudo-labels for a set of unlabeled images. These pseudo-labeled samples are used in two ways: (1) to distill knowledge into the student model, and (2) to combine with the original labeled images to further enhance the teacher model through self-training. The enhanced teacher model is used to further pseudo-label another set of unlabeled images for distilling the student models. The student model is trained using a combination of labeled images, pseudo-labeled images from the original teacher model, and pseudo-labeled images from the enhanced teacher model. Experimental results demonstrate that our student model achieves comparable performance to the teacher model with an extremely low computational overhead. Moreover, our method achieved first place in the ICCV 2025 VQualA FIQA Challenge. The code is available at https://github.com/sunwei925/Efficient-FIQA.git.
Related papers
- Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
Self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only.<n> Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-04-19T14:08:56Z) - OFTSR: One-Step Flow for Image Super-Resolution with Tunable Fidelity-Realism Trade-offs [20.652907645817713]
OFTSR is a flow-based framework for one-step image super-resolution that can produce outputs with tunable levels of fidelity and realism.<n>We demonstrate that OFTSR achieves state-of-the-art performance for one-step image super-resolution, while having the ability to flexibly tune the fidelity-realism trade-off.
arXiv Detail & Related papers (2024-12-12T17:14:58Z) - ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model [49.587821411012705]
We propose ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model.
It distills the knowledge from a large teacher CLIP model into a smaller student model, ensuring comparable performance with significantly reduced parameters.
EduAttention explores the cross-relationships between text features extracted by the teacher model and image features extracted by the student model.
arXiv Detail & Related papers (2024-08-08T01:12:21Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
We formulate a new knowledge distillation framework to transfer the knowledge from self-supervised pre-trained models to any other student network.
Inspired by the spirit of instance discrimination in self-supervised learning, we model the instance-instance relations by a graph formulation in the feature embedding space.
Our distillation scheme can be flexibly applied to transfer the self-supervised knowledge to enhance representation learning on various student networks.
arXiv Detail & Related papers (2022-11-23T19:27:48Z) - MAGE: MAsked Generative Encoder to Unify Representation Learning and
Image Synthesis [33.46831766206675]
MAsked Generative (MAGE) is first framework to unify SOTA image generation and self-supervised representation learning.
Inspired by previous generative models, MAGE uses semantic tokens learned by a vector-quantized GAN at inputs and outputs.
On ImageNet-1K, a single MAGE ViT-L model obtains 9.10 FID in the task of class-unconditional image generation.
arXiv Detail & Related papers (2022-11-16T18:59:02Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - Distilling Visual Priors from Self-Supervised Learning [24.79633121345066]
Convolutional Neural Networks (CNNs) are prone to overfit small training datasets.
We present a novel two-phase pipeline that leverages self-supervised learning and knowledge distillation to improve the generalization ability of CNN models for image classification under the data-deficient setting.
arXiv Detail & Related papers (2020-08-01T13:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.