Reservoir Computing as a Language Model
- URL: http://arxiv.org/abs/2507.15779v2
- Date: Wed, 30 Jul 2025 05:37:05 GMT
- Title: Reservoir Computing as a Language Model
- Authors: Felix Köster, Atsushi Uchida,
- Abstract summary: Large Language Models (LLM) have dominated the science and media landscape duo to their impressive performance on processing large chunks of data.<n>We will investigate how reservoir computing performs on natural text processing, which could enable fast and energy efficient hardware implementations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLM) have dominated the science and media landscape duo to their impressive performance on processing large chunks of data and produce human-like levels of text. Nevertheless, their huge energy demand and slow processing still a bottleneck for further increasing quality while also making the models accessible to everyone. To solve this bottleneck, we will investigate how reservoir computing performs on natural text processing, which could enable fast and energy efficient hardware implementations. Studies investigating the use of reservoir computing as a language model remain sparse. In this paper, we compare three distinct approaches for character-level language modeling, two different reservoir computing approaches, where only an output layer is trainable, and the well-known transformer-based architectures, which fully learn an attention-based sequence representation. We explore the performance, computational cost and prediction accuracy for both paradigms by equally varying the number of trainable parameters for all models. Using a consistent pipeline for all three approaches, we demonstrate that transformers excel in prediction quality, whereas reservoir computers remain highly efficient reducing the training and inference speed. Furthermore, we investigate two types of reservoir computing: a traditional reservoir with a static linear readout, and an attention-enhanced reservoir that dynamically adapts its output weights via an attention mechanism. Our findings underline how these paradigms scale and offer guidelines to balance resource constraints with performance.
Related papers
- Transformer^-1: Input-Adaptive Computation for Resource-Constrained Deployment [3.6219999155937113]
This paper proposes a Transformer$-1$ architecture to address the resource waste caused by fixed computation paradigms in deep learning models under dynamic scenarios.<n>In a benchmark test, our method reduces FLOPs by 42.7% and peak memory usage by 3% compared to the standard Transformer.<n>We also conducted experiments on several natural language processing tasks and achieved significant improvements in resource efficiency.
arXiv Detail & Related papers (2025-01-26T15:31:45Z) - On Importance of Pruning and Distillation for Efficient Low Resource NLP [0.3958317527488535]
Large transformer models have revolutionized Natural Language Processing, leading to significant advances in tasks like text classification.
Efforts have been made to downsize and accelerate English models, but research in this area is scarce for low-resource languages.
In this study, we explore the case of the low-resource-topic-all-docv2 model as our baseline, we implement optimization techniques to reduce computation time and memory usage.
arXiv Detail & Related papers (2024-09-21T14:58:12Z) - OmniBal: Towards Fast Instruction-Tuning for Vision-Language Models via Omniverse Computation Balance [65.48009829137824]
Large-scale 3D parallel training on vision-language instruction-tuning models leads to an imbalanced computation load across different devices.<n>We rebalance the computational load from data, model, and memory perspectives, achieving more balanced computation across devices.<n>Our method's efficacy and generalizability are further validated across various models and datasets.
arXiv Detail & Related papers (2024-07-30T12:02:58Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Benchmarking Learning Efficiency in Deep Reservoir Computing [23.753943709362794]
We introduce a benchmark of increasingly difficult tasks together with a data efficiency metric to measure how quickly machine learning models learn from training data.
We compare the learning speed of some established sequential supervised models, such as RNNs, LSTMs, or Transformers, with relatively less known alternative models based on reservoir computing.
arXiv Detail & Related papers (2022-09-29T08:16:52Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALM is a framework for dynamically allocating different amounts of compute per input and generation timestep.
We demonstrate the efficacy of our framework in reducing compute -- potential speedup of up to $times 3$ -- while provably maintaining high performance.
arXiv Detail & Related papers (2022-07-14T17:00:19Z) - Efficient Sub-structured Knowledge Distillation [52.5931565465661]
We propose an approach that is much simpler in its formulation and far more efficient for training than existing approaches.
We transfer the knowledge from a teacher model to its student model by locally matching their predictions on all sub-structures, instead of the whole output space.
arXiv Detail & Related papers (2022-03-09T15:56:49Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Predicting Attention Sparsity in Transformers [0.9786690381850356]
We propose Sparsefinder, a model trained to identify the sparsity pattern of entmax attention before computing it.
Our work provides a new angle to study model efficiency by doing extensive analysis of the tradeoff between the sparsity and recall of the predicted attention graph.
arXiv Detail & Related papers (2021-09-24T20:51:21Z) - Task Agnostic Metrics for Reservoir Computing [0.0]
Physical reservoir computing is a computational paradigm that enables temporal pattern recognition in physical matter.
The chosen dynamical system must have three desirable properties: non-linearity, complexity, and fading memory.
We show that, in general, systems with lower damping reach higher values in all three performance metrics.
arXiv Detail & Related papers (2021-08-03T13:58:11Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
We demonstrate a set of modifications to the structure of a Transformer layer, producing a more efficient architecture.
We add a convolutional module to complement the self-attention module, decoupling the learning of local and global interactions.
We apply the resulting architecture to language representation learning and demonstrate its superior performance compared to BERT models of different scales.
arXiv Detail & Related papers (2021-06-10T15:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.