Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers
- URL: http://arxiv.org/abs/2507.15833v1
- Date: Mon, 21 Jul 2025 17:44:10 GMT
- Title: Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers
- Authors: Ian Chuang, Andrew Lee, Dechen Gao, Jinyu Zou, Iman Soltani,
- Abstract summary: Human vision is a highly active process driven by gaze, which directs attention and fixation to task-relevant regions.<n>In this work, we explore how incorporating human-like active gaze into robotic policies can enhance both efficiency and performance.
- Score: 1.1031714356680165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human vision is a highly active process driven by gaze, which directs attention and fixation to task-relevant regions and dramatically reduces visual processing. In contrast, robot learning systems typically rely on passive, uniform processing of raw camera images. In this work, we explore how incorporating human-like active gaze into robotic policies can enhance both efficiency and performance. We build on recent advances in foveated image processing and apply them to an Active Vision robot system that emulates both human head movement and eye tracking. Extending prior work on the AV-ALOHA robot simulation platform, we introduce a framework for simultaneously collecting eye-tracking data and robot demonstrations from a human operator as well as a simulation benchmark and dataset for training robot policies that incorporate human gaze. Given the widespread use of Vision Transformers (ViTs) in robot learning, we integrate gaze information into ViTs using a foveated patch tokenization scheme inspired by recent work in image segmentation. Compared to uniform patch tokenization, this significantly reduces the number of tokens-and thus computation-without sacrificing visual fidelity near regions of interest. We also explore two approaches to gaze imitation and prediction from human data. The first is a two-stage model that predicts gaze to guide foveation and action; the second integrates gaze into the action space, allowing the policy to jointly predict gaze and actions end-to-end. Our results show that our method for foveated robot vision not only drastically reduces computational overhead, but also improves performance for high precision tasks and robustness to unseen distractors. Together, these findings suggest that human-inspired visual processing offers a useful inductive bias for robotic vision systems. https://ian-chuang.github.io/gaze-av-aloha/
Related papers
- Visual IRL for Human-Like Robotic Manipulation [5.167226775583172]
We present a novel method for collaborative robots (cobots) to learn manipulation tasks and perform them in a human-like manner.<n>Our method falls under the learn-from-observation (LfO) paradigm, where robots learn to perform tasks by observing human actions.<n>We evaluate the performance of this approach on two different realistic manipulation tasks.
arXiv Detail & Related papers (2024-12-16T01:23:13Z) - Prediction with Action: Visual Policy Learning via Joint Denoising Process [14.588908033404474]
PAD is a visual policy learning framework that unifies image Prediction and robot Action.<n>DiT seamlessly integrates images and robot states, enabling the simultaneous prediction of future images and robot actions.<n>Pad outperforms previous methods, achieving a significant 26.3% relative improvement on the full Metaworld benchmark.
arXiv Detail & Related papers (2024-11-27T09:54:58Z) - Robots Pre-train Robots: Manipulation-Centric Robotic Representation from Large-Scale Robot Datasets [24.77850617214567]
We propose a foundation representation learning framework capturing both visual features and the dynamics information such as actions and proprioceptions of manipulation tasks.
Specifically, we pre-train a visual encoder on the DROID robotic dataset and leverage motion-relevant data such as robot proprioceptive states and actions.
We introduce a novel contrastive loss that aligns visual observations with the robot's proprioceptive state-action dynamics, combined with a behavior cloning (BC)-like actor loss to predict actions during pre-training, along with a time contrastive loss.
arXiv Detail & Related papers (2024-10-29T17:58:13Z) - HRP: Human Affordances for Robotic Pre-Training [15.92416819748365]
We present a framework for pre-training representations on hand, object, and contact.
We experimentally demonstrate (using 3000+ robot trials) that this affordance pre-training scheme boosts performance by a minimum of 15% on 5 real-world tasks.
arXiv Detail & Related papers (2024-07-26T17:59:52Z) - Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers [36.497624484863785]
We introduce Vid2Robot, an end-to-end video-conditioned policy that takes human videos demonstrating manipulation tasks as input and produces robot actions.
Our model is trained with a large dataset of prompt video-robot trajectory pairs to learn unified representations of human and robot actions from videos.
We evaluate Vid2Robot on real-world robots and observe over 20% improvement over BC-Z when using human prompt videos.
arXiv Detail & Related papers (2024-03-19T17:47:37Z) - What Matters to You? Towards Visual Representation Alignment for Robot
Learning [81.30964736676103]
When operating in service of people, robots need to optimize rewards aligned with end-user preferences.
We propose Representation-Aligned Preference-based Learning (RAPL), a method for solving the visual representation alignment problem.
arXiv Detail & Related papers (2023-10-11T23:04:07Z) - Human-oriented Representation Learning for Robotic Manipulation [64.59499047836637]
Humans inherently possess generalizable visual representations that empower them to efficiently explore and interact with the environments in manipulation tasks.
We formalize this idea through the lens of human-oriented multi-task fine-tuning on top of pre-trained visual encoders.
Our Task Fusion Decoder consistently improves the representation of three state-of-the-art visual encoders for downstream manipulation policy-learning.
arXiv Detail & Related papers (2023-10-04T17:59:38Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
Video-conditioned Policy learning maps human demonstrations of previously unseen tasks to robot manipulation skills.
We learn our policy to generate appropriate actions given current scene observations and a video of the target task.
We validate our approach on a set of challenging multi-task robot manipulation environments and outperform state of the art.
arXiv Detail & Related papers (2023-05-10T16:25:42Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
We train a visual affordance model that estimates where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly enables the robot to perform many complex tasks.
We show the efficacy of our approach, which we call VRB, across 4 real world environments, over 10 different tasks, and 2 robotic platforms operating in the wild.
arXiv Detail & Related papers (2023-04-17T17:59:34Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.