論文の概要: SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
- arxiv url: http://arxiv.org/abs/2507.15852v2
- Date: Tue, 22 Jul 2025 10:51:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 13:10:14.765145
- Title: SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
- Title(参考訳): SeC: プログレッシブな概念構築による複雑なビデオオブジェクトのセグメンテーションの促進
- Authors: Zhixiong Zhang, Shuangrui Ding, Xiaoyi Dong, Songxin He, Jianfan Lin, Junsong Tang, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang,
- Abstract要約: ビデオオブジェクト(VOS)はコンピュータビジョンにおける中核的なタスクであり、ターゲットオブジェクトの追跡とセグメント化をモデルに要求する。
本稿では,従来の特徴マッチングから,高レベルなオブジェクト中心表現のプログレッシブな構築と利用へ移行する概念駆動セグメンテーションフレームワークであるセグメンテーション概念(SeC)を提案する。
SeCはSAM SeCVOSよりも11.8ポイント改善され、最先端のコンセプトを意識したビデオオブジェクトセグメンテーションが新たに確立された。
- 参考スコア(独自算出の注目度): 65.15449703659772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Object Segmentation (VOS) is a core task in computer vision, requiring models to track and segment target objects across video frames. Despite notable advances with recent efforts, current techniques still lag behind human capabilities in handling drastic visual variations, occlusions, and complex scene changes. This limitation arises from their reliance on appearance matching, neglecting the human-like conceptual understanding of objects that enables robust identification across temporal dynamics. Motivated by this gap, we propose Segment Concept (SeC), a concept-driven segmentation framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations. SeC employs Large Vision-Language Models (LVLMs) to integrate visual cues across diverse frames, constructing robust conceptual priors. During inference, SeC forms a comprehensive semantic representation of the target based on processed frames, realizing robust segmentation of follow-up frames. Furthermore, SeC adaptively balances LVLM-based semantic reasoning with enhanced feature matching, dynamically adjusting computational efforts based on scene complexity. To rigorously assess VOS methods in scenarios demanding high-level conceptual reasoning and robust semantic understanding, we introduce the Semantic Complex Scenarios Video Object Segmentation benchmark (SeCVOS). SeCVOS comprises 160 manually annotated multi-scenario videos designed to challenge models with substantial appearance variations and dynamic scene transformations. In particular, SeC achieves an 11.8-point improvement over SAM 2.1 on SeCVOS, establishing a new state-of-the-art in concept-aware video object segmentation.
- Abstract(参考訳): ビデオオブジェクトセグメンテーション(VOS)はコンピュータビジョンの中核的なタスクであり、ターゲットオブジェクトをビデオフレーム間で追跡およびセグメントするモデルを必要とする。
最近の取り組みでは顕著な進歩があったが、現在の技術は人間の能力に遅れを取っており、劇的な視覚的変化、閉塞、複雑なシーンの変化を処理している。
この制限は、外見の一致への依存から生じ、時間的ダイナミクスをまたいだ堅牢な識別を可能にする物体の人間的な概念的理解を無視する。
このギャップによって、従来の特徴マッチングから高レベルなオブジェクト中心表現のプログレッシブな構築と利用へ移行する概念駆動セグメンテーションフレームワークであるセグメンションコンセプト(SeC)を提案する。
SeCはLVLM(Large Vision-Language Models)を使用して、様々なフレームに視覚的手がかりを統合する。
推論中、SeCは処理されたフレームに基づいてターゲットの包括的意味表現を形成し、フォローアップフレームの堅牢なセグメンテーションを実現する。
さらに、SeCはLVLMに基づくセマンティック推論と拡張された特徴マッチングとを適応的にバランスさせ、シーンの複雑さに基づいた計算作業を動的に調整する。
高レベルな概念推論とロバストな意味理解を必要とするシナリオにおいて、VOS手法を厳格に評価するために、Semantic Complex Scenarios Video Object Segmentation benchmark(SeCVOS)を導入する。
SeCVOSは、相当な外観のバリエーションと動的なシーン変換を持つモデルに挑戦するために設計された、手動で注釈付きマルチシナリオビデオで構成されている。
特に、SeCはSeCVOS上でSAM 2.1よりも11.8ポイントの改善を実現し、概念を意識したビデオオブジェクトセグメンテーションにおける新しい最先端技術を確立している。
関連論文リスト
- Distilling Spectral Graph for Object-Context Aware Open-Vocabulary Semantic Segmentation [47.047267066525265]
画像にオブジェクトレベルの文脈知識を取り入れた新しいアプローチを導入する。
提案手法は,多種多様なデータセットにまたがる高い一般化性を有する最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-26T06:34:48Z) - Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases [69.46487306858789]
Conditional Autoregressive Slot Attention (CA-SA) は、ビデオ中心の視覚タスクにおいて抽出されたオブジェクト中心の表現の時間的一貫性を高めるフレームワークである。
本稿では,提案手法が下流タスクのベースラインよりも優れていることを示す定性的,定量的な結果を示す。
論文 参考訳(メタデータ) (2024-10-21T07:44:44Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - SOC: Semantic-Assisted Object Cluster for Referring Video Object
Segmentation [35.063881868130075]
本稿では,映像レベルの視覚言語的アライメントを高めることによって,映像オブジェクトセグメンテーション(RVOS)について述べる。
本稿では,映像コンテンツとテキストガイダンスを集約したセマンティック支援オブジェクトクラスタ(SOC)を提案する。
我々は、人気のあるRVOSベンチマークで広範な実験を行い、我々の手法は、すべてのベンチマークにおける最先端の競合よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2023-05-26T15:13:44Z) - ACSeg: Adaptive Conceptualization for Unsupervised Semantic Segmentation [17.019848796027485]
自己教師付き視覚事前学習モデルでは,画素レベルの意味的関係を表現することに大きな期待が持たれている。
本研究では,自己学習モデルにおける画素レベルのセマンティックアグリゲーションを画像エンコードや設計概念として検討する。
本稿では,これらのプロトタイプを各画像に対する情報的概念に適応的にマッピングするアダプティブ・コンセプト・ジェネレータ(ACG)を提案する。
論文 参考訳(メタデータ) (2022-10-12T06:16:34Z) - Scalable Video Object Segmentation with Identification Mechanism [125.4229430216776]
本稿では,半教師付きビデオオブジェクト(VOS)のスケーラブルで効果的なマルチオブジェクトモデリングを実現する上での課題について検討する。
AOT(Associating Objects with Transformers)とAOST(Associating Objects with Scalable Transformers)の2つの革新的なアプローチを提案する。
当社のアプローチは最先端の競合に勝って,6つのベンチマークすべてにおいて,例外的な効率性とスケーラビリティを一貫して示しています。
論文 参考訳(メタデータ) (2022-03-22T03:33:27Z) - Contrastive Transformation for Self-supervised Correspondence Learning [120.62547360463923]
野生のラベルのない動画を用いて,視覚的対応の自己監督学習について検討する。
本手法は,信頼性の高い対応推定のための映像内および映像間表現関連を同時に検討する。
我々のフレームワークは、近年の視覚的タスクにおける自己監督型対応手法よりも優れています。
論文 参考訳(メタデータ) (2020-12-09T14:05:06Z) - Visual Concept Reasoning Networks [93.99840807973546]
分割変換マージ戦略は、視覚認識タスクのための畳み込みニューラルネットワークのアーキテクチャ制約として広く使用されている。
我々は、この戦略を利用して、高レベルの視覚概念間の推論を可能にするために、Visual Concept Reasoning Networks (VCRNet) と組み合わせることを提案する。
提案するモデルであるVCRNetは、パラメータ数を1%以下にすることで、一貫して性能を向上する。
論文 参考訳(メタデータ) (2020-08-26T20:02:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。