論文の概要: Why Braking? Scenario Extraction and Reasoning Utilizing LLM
- arxiv url: http://arxiv.org/abs/2507.15874v1
- Date: Thu, 17 Jul 2025 08:33:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.775617
- Title: Why Braking? Scenario Extraction and Reasoning Utilizing LLM
- Title(参考訳): なぜブレーキは? LLMを利用したシナリオ抽出と推論
- Authors: Yin Wu, Daniel Slieter, Vivek Subramanian, Ahmed Abouelazm, Robin Bohn, J. Marius Zöllner,
- Abstract要約: シナリオ理解と推論にLarge Language Model(LLM)を利用する新しいフレームワークを提案する。
提案手法は,低レベル数値信号と自然言語記述とのギャップを埋め,LLMによる運転シナリオの解釈と分類を可能にする。
- 参考スコア(独自算出の注目度): 13.88343221678386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing number of ADAS-equipped vehicles has led to a dramatic increase in driving data, yet most of them capture routine driving behavior. Identifying and understanding safety-critical corner cases within this vast dataset remains a significant challenge. Braking events are particularly indicative of potentially hazardous situations, motivating the central question of our research: Why does a vehicle brake? Existing approaches primarily rely on rule-based heuristics to retrieve target scenarios using predefined condition filters. While effective in simple environments such as highways, these methods lack generalization in complex urban settings. In this paper, we propose a novel framework that leverages Large Language Model (LLM) for scenario understanding and reasoning. Our method bridges the gap between low-level numerical signals and natural language descriptions, enabling LLM to interpret and classify driving scenarios. We propose a dual-path scenario retrieval that supports both category-based search for known scenarios and embedding-based retrieval for unknown Out-of-Distribution (OOD) scenarios. To facilitate evaluation, we curate scenario annotations on the Argoverse 2 Sensor Dataset. Experimental results show that our method outperforms rule-based baselines and generalizes well to OOD scenarios.
- Abstract(参考訳): ADAS搭載車両の増加は、運転データを大幅に増加させたが、ほとんどの車両は日常的な運転行動を捉えている。
この膨大なデータセット内の安全クリティカルなケースを特定し、理解することは、依然として大きな課題である。
ブレーキイベントは、特に潜在的に危険な状況を示すものであり、私たちの研究の中心的な疑問を動機付けている。
既存のアプローチは主に、事前定義された条件フィルタを使用してターゲットシナリオを取得するためのルールベースのヒューリスティックに依存している。
高速道路のような単純な環境では有効であるが、複雑な都市環境での一般化は欠如している。
本稿では,シナリオ理解と推論にLarge Language Model(LLM)を利用する新しいフレームワークを提案する。
提案手法は,低レベル数値信号と自然言語記述とのギャップを埋め,LLMによる運転シナリオの解釈と分類を可能にする。
本稿では、既知のシナリオのカテゴリベース検索と未知のOut-of-Distribution(OOD)シナリオの埋め込みベースの検索の両方をサポートするデュアルパスシナリオ検索を提案する。
評価を容易にするため、Argoverse 2 Sensor Dataset上でシナリオアノテーションをキュレートする。
実験結果から,本手法はルールベースベースラインより優れ,OODシナリオによく適合することがわかった。
関連論文リスト
- DRAMA-X: A Fine-grained Intent Prediction and Risk Reasoning Benchmark For Driving [5.362063089413001]
既存のベンチマークでは、安全クリティカルな状況下でのマルチクラスの意図予測は評価されていない。
DRAMAデータセットから構築した詳細なベンチマークであるDRAMA-Xを紹介する。
我々は,エゴ車の推論パイプラインを反映した軽量でトレーニング不要なフレームワークであるSGG-Intentを提案する。
論文 参考訳(メタデータ) (2025-06-21T05:01:42Z) - From Words to Collisions: LLM-Guided Evaluation and Adversarial Generation of Safety-Critical Driving Scenarios [6.681744368557208]
大規模言語モデル(LLM)と構造化シナリオ解析と迅速なエンジニアリングは、安全クリティカルな運転シナリオを生成するために使用される。
2次元シミュレーションフレームワークと複数の事前学習LDMを用いて,本手法の有効性を検証した。
ドメインインフォームドプロンプト技術を備えたLLMは、安全クリティカルな運転シナリオを効果的に評価し、生成することができると結論付けている。
論文 参考訳(メタデータ) (2025-02-04T09:19:13Z) - Black-Box Adversarial Attack on Vision Language Models for Autonomous Driving [65.61999354218628]
我々は、自律運転システムにおいて、視覚言語モデル(VLM)をターゲットとしたブラックボックス敵攻撃を設計する第一歩を踏み出す。
セマンティクスの生成と注入による低レベル推論の分解を目標とするカスケーディング・アディバーショナル・ディスラプション(CAD)を提案する。
本稿では,高レベルリスクシナリオの理解と構築に代理VLMを活用することで,動的適応に対処するリスクシーンインジェクションを提案する。
論文 参考訳(メタデータ) (2025-01-23T11:10:02Z) - Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
大規模言語モデル(LLM)は自動運転において有望であることを示している。
本稿では,多様なOF-Distribution(OOD)駆動シナリオを生成するためのフレームワークを提案する。
我々は、広範囲なシミュレーションを通じてフレームワークを評価し、新しい"OOD-ness"メトリクスを導入する。
論文 参考訳(メタデータ) (2024-11-25T16:38:17Z) - ChatScene: Knowledge-Enabled Safety-Critical Scenario Generation for Autonomous Vehicles [17.396416459648755]
ChatSceneはLarge Language Model(LLM)ベースのエージェントで、自動運転車の安全クリティカルなシナリオを生成する。
エージェントの重要な部分は包括的知識検索コンポーネントであり、特定のテキスト記述を対応するドメイン固有のコードスニペットに効率的に翻訳する。
論文 参考訳(メタデータ) (2024-05-22T23:21:15Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Realistic Safety-critical Scenarios Search for Autonomous Driving System
via Behavior Tree [8.286351881735191]
本研究では,行動木に基づくテストフレームワークであるMatrix-Fuzzerを提案し,現実的な安全クリティカルなテストシナリオを自動的に生成する。
提案手法では, 安全クリティカルシナリオのタイプが最も多いが, ベースラインアルゴリズムと比較して, 全体の30%程度しか生成できない。
論文 参考訳(メタデータ) (2023-05-11T06:53:03Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
行動意図予測(BIP)は、人間の思考過程をシミュレートし、特定の行動の早期予測を満たす。
この作業は、利用可能なデータセット、重要な要因と課題、歩行者中心および車両中心のBIPアプローチ、BIP対応アプリケーションからのBIPの包括的なレビューを提供する。
論文 参考訳(メタデータ) (2022-11-01T11:07:37Z) - Toward Unsupervised Test Scenario Extraction for Automated Driving
Systems from Urban Naturalistic Road Traffic Data [0.0]
提案手法は、道路交通データからシナリオを抽出するための教師なし機械学習パイプラインをデプロイする。
InDおよびSilicon Valley Intersectionsデータセットから都市交差点の自然道路交通データを評価する。
階層的クラスタリングを用いて,4から5クラスタに移行すると,全体の精度が約20%向上し,41クラスタから全体の精度が84%の飽和効果が得られた。
論文 参考訳(メタデータ) (2022-02-14T10:55:14Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。