論文の概要: Behavioral Intention Prediction in Driving Scenes: A Survey
- arxiv url: http://arxiv.org/abs/2211.00385v3
- Date: Fri, 8 Dec 2023 13:51:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 19:25:13.972299
- Title: Behavioral Intention Prediction in Driving Scenes: A Survey
- Title(参考訳): 運転場面における行動意図予測 : アンケート調査
- Authors: Jianwu Fang, Fan Wang, Jianru Xue, and Tat-seng Chua
- Abstract要約: 行動意図予測(BIP)は、人間の思考過程をシミュレートし、特定の行動の早期予測を満たす。
この作業は、利用可能なデータセット、重要な要因と課題、歩行者中心および車両中心のBIPアプローチ、BIP対応アプリケーションからのBIPの包括的なレビューを提供する。
- 参考スコア(独自算出の注目度): 70.53285924851767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the driving scene, the road agents usually conduct frequent interactions
and intention understanding of the surroundings. Ego-agent (each road agent
itself) predicts what behavior will be engaged by other road users all the time
and expects a shared and consistent understanding for safe movement. Behavioral
Intention Prediction (BIP) simulates such a human consideration process and
fulfills the early prediction of specific behaviors. Similar to other
prediction tasks, such as trajectory prediction, data-driven deep learning
methods have taken the primary pipeline in research. The rapid development of
BIP inevitably leads to new issues and challenges. To catalyze future research,
this work provides a comprehensive review of BIP from the available datasets,
key factors and challenges, pedestrian-centric and vehicle-centric BIP
approaches, and BIP-aware applications. Based on the investigation, data-driven
deep learning approaches have become the primary pipelines. The behavioral
intention types are still monotonous in most current datasets and methods
(e.g., Crossing (C) and Not Crossing (NC) for pedestrians and Lane Changing
(LC) for vehicles) in this field. In addition, for the safe-critical scenarios
(e.g., near-crashing situations), current research is limited. Through this
investigation, we identify open issues in behavioral intention prediction and
suggest possible insights for future research.
- Abstract(参考訳): 運転シーンでは、通常、道路エージェントは周囲の頻繁な相互作用と意図的な理解を行う。
ego-agent(各ロードエージェント自身)は、常に他のロードユーザが関与する振る舞いを予測し、安全な動きに対する共有かつ一貫した理解を期待する。
行動意図予測(BIP)は、そのような人間の思考過程をシミュレートし、特定の行動の早期予測を満たす。
軌道予測のような他の予測タスクと同様に、データ駆動型ディープラーニング手法が研究の主要なパイプラインとなっている。
BIPの急速な開発は必然的に、新しい問題や課題に繋がる。
今後の研究を促進するために、この研究は利用可能なデータセット、重要な要因と課題、歩行者中心および車両中心のBIPアプローチ、およびBIP対応アプリケーションからのBIPの包括的なレビューを提供する。
この調査に基づいて、データ駆動型ディープラーニングアプローチが主要なパイプラインになっている。
行動意図型は、このフィールドにおける歩行者と車線変更(lc)のための、ほとんどの現在のデータセットと手法(例えば、交差(c)と通過(nc))において依然として単調である。
さらに、安全クリティカルなシナリオ(例えば、ほぼ破壊的な状況)については、現在の研究は限られている。
本研究では,行動意図予測におけるオープンな問題を特定し,今後の研究の可能性を示唆する。
関連論文リスト
- RAG-based Explainable Prediction of Road Users Behaviors for Automated Driving using Knowledge Graphs and Large Language Models [8.253092044813595]
本稿では,知識グラフと大規模言語モデルの推論能力を統合した,道路利用者の行動予測システムを提案する。
1)歩行者の横断行動の予測,2)車線変更操作の予測。
論文 参考訳(メタデータ) (2024-05-01T11:06:31Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
道路員の将来の軌跡予測への伝統的なアプローチは、過去の軌跡を知ることに依存している。
この研究は、交差点で複数の車両の予測を行うために、現在の状態と意図された方向を知ることに依存する。
この情報を車両間で送るメッセージは、それぞれがより総合的な環境概要を提供する。
論文 参考訳(メタデータ) (2023-01-06T15:13:23Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
システムレベルアプローチによる自動走行の歩行者行動予測の要件を分析した。
人間の運転行動に基づいて、自動走行車の適切な反応パターンを導出する。
複数の文脈的手がかりを組み込んだ変分条件自動エンコーダに基づく歩行者予測モデルを提案する。
論文 参考訳(メタデータ) (2020-12-15T16:52:49Z) - The PREVENTION Challenge: How Good Are Humans Predicting Lane Changes? [0.0]
本稿では,高速道路のシナリオにおける車線変化を予測する能力について分析する。
ユーザーは車線変更操作が行われていると考えた瞬間を示す必要がありました。
得られた結果は慎重に分析され、地上の真理ラベルと比較された。
論文 参考訳(メタデータ) (2020-09-11T10:47:07Z) - Towards Incorporating Contextual Knowledge into the Prediction of
Driving Behavior [5.345872343035626]
外部条件による予測の影響について検討する。
より正確には、横方向の動作予測に対する最先端のアプローチが、ある選択された外部条件、すなわち交通密度の影響について検討する。
本研究は,自動走行車への情報統合に向けた第一歩となる。
論文 参考訳(メタデータ) (2020-06-15T15:21:02Z) - Pedestrian Action Anticipation using Contextual Feature Fusion in
Stacked RNNs [19.13270454742958]
交差点における歩行者行動予測問題の解法を提案する。
提案手法では,シーン動的・視覚的特徴の両面から収集した情報を徐々にネットワークに融合する新しいRNNアーキテクチャを用いる。
論文 参考訳(メタデータ) (2020-05-13T20:59:37Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
マルチエージェント設定における予測問題に対処するために,計画インフォームド・トラジェクトリ予測(PiP)を提案する。
本手法は,エゴカーの計画により予測過程を通知することにより,高速道路のデータセット上でのマルチエージェント予測の最先端性能を実現する。
論文 参考訳(メタデータ) (2020-03-25T16:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。