論文の概要: Structural DID with ML: Theory, Simulation, and a Roadmap for Applied Research
- arxiv url: http://arxiv.org/abs/2507.15899v1
- Date: Mon, 21 Jul 2025 03:57:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.800572
- Title: Structural DID with ML: Theory, Simulation, and a Roadmap for Applied Research
- Title(参考訳): MLを用いた構造DID:理論,シミュレーション,応用研究のロードマップ
- Authors: Yile Yu, Anzhi Xu, Yi Wang,
- Abstract要約: 観測パネルデータの因果推論は、経済学、政治分析、より広範な社会科学において中心的な関心事となっている。
本稿では,構造同定と高次元推定を統合したS-DIDという革新的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.0031348283981987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference in observational panel data has become a central concern in economics,policy analysis,and the broader social sciences.To address the core contradiction where traditional difference-in-differences (DID) struggles with high-dimensional confounding variables in observational panel data,while machine learning (ML) lacks causal structure interpretability,this paper proposes an innovative framework called S-DIDML that integrates structural identification with high-dimensional estimation.Building upon the structure of traditional DID methods,S-DIDML employs structured residual orthogonalization techniques (Neyman orthogonality+cross-fitting) to retain the group-time treatment effect (ATT) identification structure while resolving high-dimensional covariate interference issues.It designs a dynamic heterogeneity estimation module combining causal forests and semi-parametric models to capture spatiotemporal heterogeneity effects.The framework establishes a complete modular application process with standardized Stata implementation paths.The introduction of S-DIDML enriches methodological research on DID and DDML innovations, shifting causal inference from method stacking to architecture integration.This advancement enables social sciences to precisely identify policy-sensitive groups and optimize resource allocation.The framework provides replicable evaluation tools, decision optimization references,and methodological paradigms for complex intervention scenarios such as digital transformation policies and environmental regulations.
- Abstract(参考訳): 観察パネルデータの因果推論は、経済・政治分析・社会科学において中心的な関心事となっているが、従来の差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分差分値法法))))))) ) ) ) ) ) ) ) ) ) ) ---------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ------------------------------
関連論文リスト
- Spatiodynamic inference using vision-based generative modelling [0.5461938536945723]
我々は,視覚変換器駆動の変分表現を用いたシミュレーションに基づく推論フレームワークを開発した。
中心となる考え方は、パラメータ空間の体系的な探索を通じて、潜在力学の微細で構造化されたメッシュを構築することである。
生成的モデリングと機械的原理を統合することで、我々のアプローチは統合された推論フレームワークを提供する。
論文 参考訳(メタデータ) (2025-07-29T22:10:50Z) - CTRLS: Chain-of-Thought Reasoning via Latent State-Transition [57.51370433303236]
チェーン・オブ・シント(CoT)推論は、大規模な言語モデルで複雑な問題を解釈可能な中間ステップに分解することを可能にする。
我々は,遅延状態遷移を伴うマルコフ決定プロセス(MDP)としてCoT推論を定式化するフレームワークであるgroundingSを紹介する。
我々は、ベンチマーク推論タスクにおける推論精度、多様性、探索効率の改善を示す。
論文 参考訳(メタデータ) (2025-07-10T21:32:18Z) - Learning Time-Aware Causal Representation for Model Generalization in Evolving Domains [50.66049136093248]
動的因果要因と因果機構のドリフトを組み込んだ時間認識型構造因果モデル(SCM)を開発した。
本研究では,時間領域毎に最適な因果予測値が得られることを示す。
合成と実世界の両方のデータセットの結果から,SynCは時間的一般化性能に優れることが示された。
論文 参考訳(メタデータ) (2025-06-21T14:05:37Z) - Modeling and Visualization Reasoning for Stakeholders in Education and Industry Integration Systems: Research on Structured Synthetic Dialogue Data Generation Based on NIST Standards [3.5516803380598074]
本研究では,教育産業統合(EII)システムにおける利害関係者の相互作用の構造的複雑さと意味的あいまいさに対処する。
我々は,NIST(National Institute of Standards and Technology)合成データ品質フレームワークに基づく構造モデリングパラダイムを提案する。
論文 参考訳(メタデータ) (2025-06-20T12:37:43Z) - Aligning MLLM Benchmark With Human Preferences via Structural Equation Modeling [17.092510377905814]
マルチモーダルな大規模言語モデル (MLLM) の評価は、構造化され、解釈可能で、理論的に基礎付けられたベンチマーク設計の欠如により、依然として根本的な課題である。
本研究では、内部の妥当性、次元分離性、およびベンチマークコンポーネントの寄与を分析するために、構造方程式モデリング(SEM)に基づくMLLMベンチマークの整合性を示す新しいフレームワークを提案する。
実験結果から,提案ベンチマークは,従来の手法に比べて高い解釈可能性,指標冗長性の低減,認知的整合性の明確化を示すことが示された。
論文 参考訳(メタデータ) (2025-06-13T08:04:56Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
異常検出(AD)は、サイバーセキュリティ、金融、医療、工業製造など、さまざまな分野において重要な役割を担っている。
近年のディープラーニング,特に拡散モデル(DM)の進歩は,大きな関心を集めている。
この調査は、研究者や実践者が様々なアプリケーションにまたがる革新的なADソリューションにDMを利用することをガイドすることを目的としている。
論文 参考訳(メタデータ) (2025-06-11T03:29:18Z) - Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
大規模言語モデル(LLM)は、自然言語処理タスク全体で強力なパフォーマンスを示すが、デプロイメント用に修正された場合、大幅なパフォーマンス低下を経験する。
この現象をモデル出血(パラメータ変更とアーキテクチャ変更によるパフォーマンス低下)と定義する。
論文 参考訳(メタデータ) (2025-03-31T10:16:03Z) - Time Series Domain Adaptation via Latent Invariant Causal Mechanism [28.329164754662354]
時系列領域適応は、ラベル付けされたソースドメインからラベル付けされていないターゲットドメインに複雑な時間依存性を転送することを目的としている。
近年の進歩は、観測変数に対する安定した因果機構を利用して、ドメイン不変時間依存をモデル化している。
しかし、ビデオのような高次元データにおける正確な因果構造をモデル化することは依然として困難である。
論文 参考訳(メタデータ) (2025-02-23T16:25:58Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP)は、大規模言語モデルが言語構造をどのように処理するかを分析するために設計された方法論である。
CAPは様々なモデルレベルで構成型プールを通してモデル活性化に介入する。
本研究は,合成セマンティクス処理とモデル解釈可能性に関する,現在のトランスフォーマーアーキテクチャの基本的制約を明らかにする。
論文 参考訳(メタデータ) (2024-10-16T18:10:50Z) - Persistent Topological Features in Large Language Models [0.6597195879147556]
トポロジカルな特徴である$p$次元の穴が層全体に持続し、進化していくかを測定するトポロジカル記述子を導入する。
このことは、プロンプトがどのように再配置され、それらの相対的な位置が表現空間で変化するかという統計的視点を与える。
ショーケースアプリケーションとして、レイヤプルーニングの基準を確立するためにzigzag Persistenceを使用し、最先端の手法に匹敵する結果を得る。
論文 参考訳(メタデータ) (2024-10-14T19:46:23Z) - Images in Discrete Choice Modeling: Addressing Data Isomorphism in
Multi-Modality Inputs [77.54052164713394]
本稿では,離散選択モデリング(DCM)と機械学習の交わりについて考察する。
本稿では,DCMフレームワーク内の従来の表型入力と同型情報を共有する高次元画像データの埋め込み結果について検討する。
論文 参考訳(メタデータ) (2023-12-22T14:33:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。