論文の概要: Time Series Domain Adaptation via Latent Invariant Causal Mechanism
- arxiv url: http://arxiv.org/abs/2502.16637v1
- Date: Sun, 23 Feb 2025 16:25:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:56:07.471882
- Title: Time Series Domain Adaptation via Latent Invariant Causal Mechanism
- Title(参考訳): 潜時不変因果機構による時系列領域適応
- Authors: Ruichu Cai, Junxian Huang, Zhenhui Yang, Zijian Li, Emadeldeen Eldele, Min Wu, Fuchun Sun,
- Abstract要約: 時系列領域適応は、ラベル付けされたソースドメインからラベル付けされていないターゲットドメインに複雑な時間依存性を転送することを目的としている。
近年の進歩は、観測変数に対する安定した因果機構を利用して、ドメイン不変時間依存をモデル化している。
しかし、ビデオのような高次元データにおける正確な因果構造をモデル化することは依然として困難である。
- 参考スコア(独自算出の注目度): 28.329164754662354
- License:
- Abstract: Time series domain adaptation aims to transfer the complex temporal dependence from the labeled source domain to the unlabeled target domain. Recent advances leverage the stable causal mechanism over observed variables to model the domain-invariant temporal dependence. However, modeling precise causal structures in high-dimensional data, such as videos, remains challenging. Additionally, direct causal edges may not exist among observed variables (e.g., pixels). These limitations hinder the applicability of existing approaches to real-world scenarios. To address these challenges, we find that the high-dimension time series data are generated from the low-dimension latent variables, which motivates us to model the causal mechanisms of the temporal latent process. Based on this intuition, we propose a latent causal mechanism identification framework that guarantees the uniqueness of the reconstructed latent causal structures. Specifically, we first identify latent variables by utilizing sufficient changes in historical information. Moreover, by enforcing the sparsity of the relationships of latent variables, we can achieve identifiable latent causal structures. Built on the theoretical results, we develop the Latent Causality Alignment (LCA) model that leverages variational inference, which incorporates an intra-domain latent sparsity constraint for latent structure reconstruction and an inter-domain latent sparsity constraint for domain-invariant structure reconstruction. Experiment results on eight benchmarks show a general improvement in the domain-adaptive time series classification and forecasting tasks, highlighting the effectiveness of our method in real-world scenarios. Codes are available at https://github.com/DMIRLAB-Group/LCA.
- Abstract(参考訳): 時系列領域適応は、ラベル付けされたソースドメインからラベル付けされていないターゲットドメインに複雑な時間依存性を転送することを目的としている。
近年の進歩は、観測変数に対する安定した因果機構を利用して、ドメイン不変時間依存をモデル化している。
しかし、ビデオのような高次元データにおける正確な因果構造をモデル化することは依然として困難である。
さらに、観察された変数(例えばピクセル)の間に直接因果縁は存在しないかもしれない。
これらの制限は、現実世界のシナリオに対する既存のアプローチの適用性を妨げます。
これらの課題に対処するために、高次元時系列データは、時間潜在過程の因果メカニズムをモデル化する動機となる低次元潜在変数から生成される。
この直感に基づいて,再建された潜在因果構造の特異性を保証する潜在因果機構同定フレームワークを提案する。
具体的には、まず、履歴情報の十分な変化を利用して潜伏変数を識別する。
さらに、潜伏変数の関係の空間性を強制することにより、特定可能な潜伏因果構造を実現することができる。
理論的結果に基づいて,潜時構造再構築のためのドメイン内潜時空間制約と,ドメイン不変構造再構築のためのドメイン間潜時空間制約を組み込んだ変動推論を利用したLCAモデルを開発した。
8つのベンチマーク実験の結果、ドメイン適応型時系列分類と予測タスクの全般的な改善を示し、実世界のシナリオにおける本手法の有効性を強調した。
コードはhttps://github.com/DMIRLAB-Group/LCAで公開されている。
関連論文リスト
- Unsupervised Structural-Counterfactual Generation under Domain Shift [0.0]
本稿では,ソース領域からの事実観測に基づいて,対象領域における対実サンプルの生成という,新たな生成モデル課題を提案する。
本フレームワークは, 対象領域からの影響-内在変数の後方分布と, 対象領域からの領域-内在変数の事前分布とを組み合わせて, 所望の反事実を合成する。
論文 参考訳(メタデータ) (2025-02-17T16:48:16Z) - Causal Temporal Representation Learning with Nonstationary Sparse Transition [22.6420431022419]
Causal Temporal Representation Learning (Ctrl) 法は、複雑な非定常時間列の時間的因果ダイナミクスを特定することを目的としている。
この研究は、人間の直感的な理解と整合したスパース遷移の仮定を採用し、理論的な観点から識別可能性の結果を提示している。
本稿では,非定常スパース遷移を用いた因果時間表現学習(CtrlNS)を提案する。
論文 参考訳(メタデータ) (2024-09-05T00:38:27Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
本稿では,潜在因果変数を間接的に観察する際の因果表現学習問題について検討する。
目的は、 (i) 未知の線形変換(スケーリングまで)を回復し、 (ii) 潜在変数の下の有向非巡回グラフ(DAG)を決定することである。
論文 参考訳(メタデータ) (2023-01-19T18:39:48Z) - Transferable Time-Series Forecasting under Causal Conditional Shift [28.059991304278572]
時系列予測における半教師付き領域適応問題に対するエンドツーエンドモデルを提案する。
提案手法は, クロスドメインデータ間のグランガーカウサル構造を検出するだけでなく, 正確かつ解釈可能な予測結果を用いて, クロスドメイン時系列予測問題に対処する。
論文 参考訳(メタデータ) (2021-11-05T11:50:07Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition [7.9603223299524535]
本稿では、時間変化の時間依存性パターンをキャプチャする問題に対処するために、従来の逐次モデリング手法を再検討する。
我々は、過去のフレームへの依存を動的に推定するHMMの異なる定式化を提案する。
フォワード・バックワード・アルゴリズムに基づく抽出可能な推論アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-02-13T23:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。