A Lightweight Face Quality Assessment Framework to Improve Face Verification Performance in Real-Time Screening Applications
- URL: http://arxiv.org/abs/2507.15961v2
- Date: Sun, 27 Jul 2025 20:09:52 GMT
- Title: A Lightweight Face Quality Assessment Framework to Improve Face Verification Performance in Real-Time Screening Applications
- Authors: Ahmed Aman Ibrahim, Hamad Mansour Alawar, Abdulnasser Abbas Zehi, Ahmed Mohammad Alkendi, Bilal Shafi Ashfaq Ahmed Mirza, Shan Ullah, Ismail Lujain Jaleel, Hassan Ugail,
- Abstract summary: Face image quality plays a critical role in determining the accuracy and reliability of face verification systems.<n>Low-quality face images, often caused by factors such as motion blur, poor lighting conditions, and extreme pose variations, significantly degrade the performance of face recognition models.<n>We propose a framework for automatic face quality assessment, which aims to pre-filter low-quality face images before they are passed to the verification pipeline.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face image quality plays a critical role in determining the accuracy and reliability of face verification systems, particularly in real-time screening applications such as surveillance, identity verification, and access control. Low-quality face images, often caused by factors such as motion blur, poor lighting conditions, occlusions, and extreme pose variations, significantly degrade the performance of face recognition models, leading to higher false rejection and false acceptance rates. In this work, we propose a lightweight yet effective framework for automatic face quality assessment, which aims to pre-filter low-quality face images before they are passed to the verification pipeline. Our approach utilises normalised facial landmarks in conjunction with a Random Forest Regression classifier to assess image quality, achieving an accuracy of 96.67%. By integrating this quality assessment module into the face verification process, we observe a substantial improvement in performance, including a comfortable 99.7% reduction in the false rejection rate and enhanced cosine similarity scores when paired with the ArcFace face verification model. To validate our approach, we have conducted experiments on a real-world dataset collected comprising over 600 subjects captured from CCTV footage in unconstrained environments within Dubai Police. Our results demonstrate that the proposed framework effectively mitigates the impact of poor-quality face images, outperforming existing face quality assessment techniques while maintaining computational efficiency. Moreover, the framework specifically addresses two critical challenges in real-time screening: variations in face resolution and pose deviations, both of which are prevalent in practical surveillance scenarios.
Related papers
- Impact of Face Alignment on Face Image Quality [0.0]
The impact of alignment on face image quality has not been thoroughly investigated.<n>Our study examines the impact of face alignment on face image quality scores.
arXiv Detail & Related papers (2024-12-16T13:49:57Z) - Analysis and Benchmarking of Extending Blind Face Image Restoration to Videos [99.42805906884499]
We first introduce a Real-world Low-Quality Face Video benchmark (RFV-LQ) to evaluate leading image-based face restoration algorithms.
We then conduct a thorough systematical analysis of the benefits and challenges associated with extending blind face image restoration algorithms to degraded face videos.
Our analysis identifies several key issues, primarily categorized into two aspects: significant jitters in facial components and noise-shape flickering between frames.
arXiv Detail & Related papers (2024-10-15T17:53:25Z) - Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
The metric of measuring the quality in most face swapping methods relies on several distances between the manipulated images and the source image.
We present a novel no-reference image quality assessment (NR-IQA) method specifically designed for face swapping.
arXiv Detail & Related papers (2024-06-04T01:36:29Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Boosting Cross-Quality Face Verification using Blind Face Restoration [0.13654846342364302]
It is crucial for the task of face verification to enhance the perceptual quality of the low quality images.
In this paper, we investigate the impact of applying three state-of-the-art blind face restoration techniques on the performance of face verification system.
arXiv Detail & Related papers (2023-08-15T18:05:19Z) - Cross-Quality LFW: A Database for Analyzing Cross-Resolution Image Face
Recognition in Unconstrained Environments [8.368543987898732]
Real-world face recognition applications often deal with suboptimal image quality or resolution due to different capturing conditions.
Recent cross-resolution face recognition approaches used simple, arbitrary, and unrealistic down- and up-scaling techniques to measure distances against real-world edge-cases in image quality.
We propose a new standardized benchmark dataset and evaluation protocol derived from the famous Labeled Faces in the Wild.
arXiv Detail & Related papers (2021-08-23T17:04:32Z) - Simultaneous Face Hallucination and Translation for Thermal to Visible
Face Verification using Axial-GAN [74.22129648654783]
We introduce the task of thermal-to-visible face verification from low-resolution thermal images.
We propose Axial-Generative Adversarial Network (Axial-GAN) to synthesize high-resolution visible images for matching.
arXiv Detail & Related papers (2021-04-13T22:34:28Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
We propose a method for generating image quality training data automatically from'mated-pairs' of face images.
We use the generated data to train a lightweight Predictive Confidence Network, termed as PCNet, for estimating the confidence score of a face image.
arXiv Detail & Related papers (2020-09-01T17:52:00Z) - SER-FIQ: Unsupervised Estimation of Face Image Quality Based on
Stochastic Embedding Robustness [15.431761867166]
We propose a novel concept to measure face quality based on an arbitrary face recognition model.
We compare our proposed solution on two face embeddings against six state-of-the-art approaches from academia and industry.
arXiv Detail & Related papers (2020-03-20T16:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.