論文の概要: Edge-case Synthesis for Fisheye Object Detection: A Data-centric Perspective
- arxiv url: http://arxiv.org/abs/2507.16254v1
- Date: Tue, 22 Jul 2025 06:07:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:13.985234
- Title: Edge-case Synthesis for Fisheye Object Detection: A Data-centric Perspective
- Title(参考訳): 魚眼物体検出のためのエッジケース合成:データ中心の視点
- Authors: Seunghyeon Kim, Kyeongryeol Go,
- Abstract要約: フィッシュアイカメラは、大きな歪みを導入し、従来のデータセットでトレーニングされたオブジェクト検出モデルに固有の課題を提起する。
本稿では,モデルの盲点を特定する上で重要な課題に着目し,検出性能を体系的に向上するデータ中心パイプラインを提案する。
- 参考スコア(独自算出の注目度): 2.4603149388689514
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fisheye cameras introduce significant distortion and pose unique challenges to object detection models trained on conventional datasets. In this work, we propose a data-centric pipeline that systematically improves detection performance by focusing on the key question of identifying the blind spots of the model. Through detailed error analysis, we identify critical edge-cases such as confusing class pairs, peripheral distortions, and underrepresented contexts. Then we directly address them through edge-case synthesis. We fine-tuned an image generative model and guided it with carefully crafted prompts to produce images that replicate real-world failure modes. These synthetic images are pseudo-labeled using a high-quality detector and integrated into training. Our approach results in consistent performance gains, highlighting how deeply understanding data and selectively fixing its weaknesses can be impactful in specialized domains like fisheye object detection.
- Abstract(参考訳): フィッシュアイカメラは、大きな歪みを導入し、従来のデータセットでトレーニングされたオブジェクト検出モデルに固有の課題を提起する。
本研究では,モデルの盲点を特定する上で重要な問題に着目し,検出性能を体系的に向上するデータ中心パイプラインを提案する。
詳細なエラー解析により,クラスペアの混乱,周辺歪み,表現不足といった重要なエッジケースを同定する。
そして、それらをエッジケース合成によって直接処理する。
我々は、画像生成モデルを微調整し、それを慎重に設計したプロンプトでガイドし、実世界の障害モードを再現する画像を生成する。
これらの合成画像は、高品質な検出器を用いて擬似ラベル付けされ、トレーニングに統合される。
提案手法は,魚眼オブジェクト検出などの特殊な領域において,データの深い理解と弱点の選択的修正がいかに影響するかを強調し,一貫したパフォーマンス向上をもたらす。
関連論文リスト
- Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models [58.98742597810023]
視覚モデルは、ノイズやぼやけなどの乱れに対して頑丈に振る舞う必要がある。
本稿では,OpticsBenchとLensCorruptionsという,ぼやけた汚職の2つのデータセットについて検討する。
ImageNet と MSCOCO における画像分類と物体検出の評価は,様々な事前学習モデルにおいて OpticsBench と LensCorruptions の性能が著しく異なることを示す。
論文 参考訳(メタデータ) (2025-04-25T17:23:47Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - Exploiting the Distortion-Semantic Interaction in Fisheye Data [12.633032175875865]
魚眼のデータは他のタイプのカメラよりも広い視野の利点があるが、これは高い歪みを犠牲にしている。
中心からさらに離れたオブジェクトは、モデルがセマンティックコンテキストを特定するのが難しくなる変形を示す。
画像の中心から物体の距離に基づいて歪みクラスラベルを抽出し,この関係を利用する手法を提案する。
次に、同じ意味クラスのオブジェクトと互いに近い歪みクラスのオブジェクトを制約する重み付けされた対照的な損失で、バックボーンの表現空間を形成する。
論文 参考訳(メタデータ) (2023-04-28T20:23:38Z) - Robustness and invariance properties of image classifiers [8.970032486260695]
ディープニューラルネットワークは多くの画像分類タスクで印象的な結果を得た。
ディープネットワークは、多種多様なセマンティック保存画像修正に対して堅牢ではない。
画像分類器の小さなデータ分散シフトに対する堅牢性の低さは、その信頼性に関する深刻な懸念を引き起こす。
論文 参考訳(メタデータ) (2022-08-30T11:00:59Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。