論文の概要: SFNet: A Spatial-Frequency Domain Deep Learning Network for Efficient Alzheimer's Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2507.16267v2
- Date: Wed, 23 Jul 2025 05:53:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 12:00:05.684955
- Title: SFNet: A Spatial-Frequency Domain Deep Learning Network for Efficient Alzheimer's Disease Diagnosis
- Title(参考訳): SFNet:高能率アルツハイマー病診断のための空間周波数領域深層学習ネットワーク
- Authors: Xinyue Yang, Meiliang Liu, Yunfang Xu, Xiaoxiao Yang, Zhengye Si, Zijin Li, Zhiwen Zhao,
- Abstract要約: アルツハイマー病(英語: Alzheimer's disease、AD)は、高齢者に主に影響を及ぼす進行性神経変性疾患である。
SFNetは、空間領域情報と周波数領域情報を同時に利用して、3D MRIベースのAD診断を強化する最初のエンドツーエンドディープラーニングフレームワークである。
- 参考スコア(独自算出の注目度): 1.3401966602181168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that predominantly affects the elderly population and currently has no cure. Magnetic Resonance Imaging (MRI), as a non-invasive imaging technique, is essential for the early diagnosis of AD. MRI inherently contains both spatial and frequency information, as raw signals are acquired in the frequency domain and reconstructed into spatial images via the Fourier transform. However, most existing AD diagnostic models extract features from a single domain, limiting their capacity to fully capture the complex neuroimaging characteristics of the disease. While some studies have combined spatial and frequency information, they are mostly confined to 2D MRI, leaving the potential of dual-domain analysis in 3D MRI unexplored. To overcome this limitation, we propose Spatio-Frequency Network (SFNet), the first end-to-end deep learning framework that simultaneously leverages spatial and frequency domain information to enhance 3D MRI-based AD diagnosis. SFNet integrates an enhanced dense convolutional network to extract local spatial features and a global frequency module to capture global frequency-domain representations. Additionally, a novel multi-scale attention module is proposed to further refine spatial feature extraction. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that SFNet outperforms existing baselines and reduces computational overhead in classifying cognitively normal (CN) and AD, achieving an accuracy of 95.1%.
- Abstract(参考訳): アルツハイマー病(英語: Alzheimer's disease、AD)は、高齢者に主に影響を及ぼす進行性神経変性疾患である。
非侵襲的画像診断法としてのMRIは,ADの早期診断に必須である。
MRIは本質的に、周波数領域で生信号が取得され、フーリエ変換を介して空間画像に再構成されるため、空間情報と周波数情報の両方を含む。
しかし、既存のAD診断モデルは単一のドメインから特徴を抽出し、病気の複雑な神経画像の特徴を完全に捉える能力を制限する。
空間情報と周波数情報を組み合わせた研究もあるが、それらは主に2次元MRIに限られており、3次元MRIにおける二重領域解析の可能性は未解明のままである。
この制限を克服するために、空間領域情報と周波数領域情報を同時に活用し、3D MRIに基づくAD診断を強化する最初のエンドツーエンドディープラーニングフレームワークであるSpatio-Frequency Network (SFNet)を提案する。
SFNetは、局所的な空間的特徴を抽出する高密度畳み込みネットワークと、グローバルな周波数領域表現をキャプチャするグローバルな周波数モジュールを統合している。
さらに,空間的特徴抽出をさらに洗練するために,新しいマルチスケールアテンションモジュールを提案する。
アルツハイマー病神経画像イニシアチブ(ADNI)データセットの実験では、SFNetは既存のベースラインを上回り、認知正常(CN)とADを分類する際の計算オーバーヘッドを減らし、95.1%の精度を達成している。
関連論文リスト
- 4D Multimodal Co-attention Fusion Network with Latent Contrastive Alignment for Alzheimer's Diagnosis [24.771496672135395]
M2M-AlignNet: 早期アルツハイマー病診断のための遅延アライメントを有する幾何認識型コアテンションネットワークを提案する。
提案手法のコアとなるマルチパッチ・マルチパッチ(M2M)コントラスト損失関数は,表現の相違を定量化し,低減する。
提案手法の有効性を確認し,ADバイオマーカーとしてfMRIとsMRIの対応性を強調した。
論文 参考訳(メタデータ) (2025-04-23T15:18:55Z) - Early diagnosis of Alzheimer's disease from MRI images with deep learning model [0.7673339435080445]
アルツハイマー病は世界中で認知症の最も一般的な原因である。
認知症の分類には、医学的履歴レビュー、神経心理学的テスト、MRI(MRI)などのアプローチが含まれる
本稿では,AD画像から重要な特徴を抽出するために,事前学習した畳み込みニューラルネットワークをDEMNET認知ネットワークに適用する。
論文 参考訳(メタデータ) (2024-09-27T15:07:26Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
本研究では,Fourier領域学習を3次元階層分割モデルにおけるマルチスケール畳み込みカーネルの代用として活用する。
管状血管分割作業において,新しいネットワークは顕著なサイス性能(ASACA500が84.37%,ImageCASが80.32%)を示した。
論文 参考訳(メタデータ) (2024-01-11T19:07:58Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Longformer: Longitudinal Transformer for Alzheimer's Disease
Classification with Structural MRIs [1.9450973046619378]
本稿では,各時点のsMRI上で空間的に注意機構を実行するトランスフォーマーネットワークであるLongformerを提案する。
我々のLongformerは、ADデータセットを用いてアルツハイマー病(AD)の異なる段階を分離する2つのバイナリ分類タスクにおいて、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-02-02T06:38:00Z) - Z-SSMNet: Zonal-aware Self-supervised Mesh Network for Prostate Cancer Detection and Diagnosis with Bi-parametric MRI [14.101371684361675]
我々はZ-SSMNet(Z-SSMNet)を提案する。
Z-SSMNetは、多次元(2D/2.5D/3D)畳み込みを適応的に統合し、高密度スライス情報と異方性bpMRIのスパースス間情報を学習する。
大規模未ラベルデータを用いてネットワークを事前学習するための自己教師付き学習(SSL)手法を提案する。
論文 参考訳(メタデータ) (2022-12-12T10:08:46Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Characterization Multimodal Connectivity of Brain Network by Hypergraph
GAN for Alzheimer's Disease Analysis [30.99183477161096]
脳ネットワークを特徴付けるマルチモーダル・ニューロイメージングデータは、現在、アルツハイマー病(AD)解析の高度な技術である。
DTI と rs-fMRI の組合せから脳ネットワークのマルチモーダル接続を生成するための新しいハイパーグラフ生成支援ネットワーク (HGGAN) を提案する。
論文 参考訳(メタデータ) (2021-07-21T09:02:29Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
ASD分類のための4次元畳み込み深層学習手法を提案する。
F1スコアは0.71、F1スコアは0.65であるのに対し、我々は4Dニューラルネットワークと畳み込みリカレントモデルを採用する。
論文 参考訳(メタデータ) (2020-04-21T17:19:06Z) - A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI
data: An ABIDE Autism Classification study [0.0]
本稿では,3次元CNNと3次元磁気LSTMを用いて,全4次元データから特徴を抽出できるエンドツーエンドアルゴリズムを提案する。
提案手法は,NYUサイトとUMサイトにおいて,F1スコア0.78,0.7の単一サイトにおいて,技術結果の状態を達成できることを示す。
論文 参考訳(メタデータ) (2020-02-14T11:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。