Engineering Non-Hermitian Quantum Evolution Using a Hermitian Bath Environment
- URL: http://arxiv.org/abs/2507.16286v1
- Date: Tue, 22 Jul 2025 07:14:05 GMT
- Title: Engineering Non-Hermitian Quantum Evolution Using a Hermitian Bath Environment
- Authors: Mahmoud A. Selim, Max Ehrhardt, Yuqiang Ding, Qi Zhong, Armando Perez Leija, Konstantinos G. Makris, Ramy El Ganainy, Sahin K. Ozdemir, Matthias Heinrich, Alexander Szameit, Demetrios N. Christodoulides, Mercedeh Khajavikhan,
- Abstract summary: Engineering quantum bath networks through non-Hermitian subsystem Hamiltonians has emerged as a promising strategy for qubit cooling, state stabilization, and fault-tolerant quantum computation.<n>We introduce a systematic framework for constructing non-Hermitian subsystems within entirely Hermitian photonic platforms.<n>In particular, controlled exponential decay absorption without actual loss is realized in finite 1-D waveguide chains through discrete-to-continuum coupling and Lanczos transformations.
- Score: 31.392358417707825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Engineering quantum bath networks through non-Hermitian subsystem Hamiltonians has recently emerged as a promising strategy for qubit cooling, state stabilization, and fault-tolerant quantum computation. However, scaling these systems while maintaining precise control over their complex interconnections, especially in the optical domain, poses significant challenges in both theoretical modeling and physical implementation. In this work, drawing on principles from quantum and mathematical physics, we introduce a systematic framework for constructing non-Hermitian subsystems within entirely Hermitian photonic platforms. In particular, controlled exponential decay without actual absorption loss is realized in finite 1-D waveguide chains through discrete-to-continuum coupling and Lanczos transformations. Using this new methodology, we implement parity-time symmetric quantum systems and experimentally demonstrate that these artificial bath environments accurately replicate the dynamics of non-Hermitian arrangements in both single- and multi-photon excitation regimes. Since the non-Hermitian subsystem response deterministically arises from an artificially built Hermitian bath, the quantum evolution can be monitored via post-selection in this fully conservative configuration. This approach bridges the gap between theoretical models and experimental realizations, thus paving the way for exploiting quantum bath engineering in advanced information processing and emerging quantum technologies.
Related papers
- Robust Variational Ground-State Solvers via Dissipative Quantum Feedback Models [3.7346004746366384]
We propose a variational framework for solving ground-state problems of open quantum systems governed by quantum differential equations.<n>By parameterizing a dissipative quantum optical system, we minimize its steady-state energy to approximate the ground state of a target Hamiltonian.<n>This framework is compatible with experimental platforms such as cavity quantum electrodynamics (QED) and photonic crystal circuits.
arXiv Detail & Related papers (2025-07-26T15:28:35Z) - Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Bath Dynamical Decoupling with a Quantum Channel [44.99833362998488]
We find that bath dynamical decoupling works if and only if the kick is ergodic.<n>We study in which circumstances CPTP kicks on a mono-partite quantum system induce quantum Zeno dynamics with its Hamiltonian cancelled out.
arXiv Detail & Related papers (2024-09-27T07:47:52Z) - Non-Hermitian Pseudomodes for Strongly Coupled Open Quantum Systems: Unravelings, Correlations and Thermodynamics [0.0]
Pseudomode framework provides an exact description of the dynamics of an open quantum system coupled to a non-Markovian environment.
We show that our approach decreases the number of pseudomodes that are required to model, for example, underdamped environments at finite temperature.
arXiv Detail & Related papers (2024-01-22T10:41:43Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Non-Hermiticity in quantum nonlinear optics through symplectic
transformations [0.0]
We show that second-quantised Hermitian Hamiltonians on the Fock space give rise to non-Hermitian effective Hamiltonians.
We create a quantum optical scheme for simulating arbitrary non-unitary processes by way of singular value decomposition.
arXiv Detail & Related papers (2023-10-06T18:41:46Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Practical quantum simulation of small-scale non-Hermitian dynamics [10.584549329610134]
We propose a protocol which combines a dilation method with the variational quantum algorithm.
The dilation method is used to transform a non-Hermitian Hamiltonian into a Hermitian one through an exquisite quantum circuit.
As a demonstration, we apply our protocol to simulate the dynamics of an Ising chain with nonlocal non-Hermitian perturbations.
arXiv Detail & Related papers (2022-11-27T13:33:12Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.